Repository logo
 
Publication

Power Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage System

dc.contributor.authorFaria, João
dc.contributor.authorPombo, José
dc.contributor.authorCalado, M. do Rosário
dc.contributor.authorMariano, S.
dc.date.accessioned2019-05-02T13:11:15Z
dc.date.available2019-05-02T13:11:15Z
dc.date.issued2019-03
dc.description.abstractStandalone microgrids with photovoltaic (PV) solutions could be a promising solution for powering up off-grid communities. However, this type of application requires the use of energy storage systems (ESS) to manage the intermittency of PV production. The most commonly used ESSs are lithium-ion batteries (Li-ion), but this technology has a low lifespan, mostly caused by the imposed stress. To reduce the stress on Li-ion batteries and extend their lifespan, hybrid energy storage systems (HESS) began to emerge. Although the utilization of HESSs has demonstrated great potential to make up for the limitations of Li-ion batteries, a proper power management strategy is key to achieving the HESS objectives and ensuring a harmonized system operation. This paper proposes a novel power management strategy based on an artificial neural network for a standalone PV system with Li-ion batteries and super-capacitors (SC) HESS. A typical standalone PV system is used to demonstrate and validate the performance of the proposed power management strategy. To demonstrate its effectiveness, computational simulations with short and long duration were performed. The results show a minimization in Li-ion battery dynamic stress and peak current, leading to an increased lifespan of Li-ion batteries. Moreover, the proposed power management strategy increases the level of SC utilization in comparison with other well-established strategies in the literature.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/en12050902pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/7055
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.subjectArtificial neural networkpt_PT
dc.subjectBattery management systempt_PT
dc.subjectDC/DC converterspt_PT
dc.subjectEnergy storage systempt_PT
dc.subjectLi-ion battery packpt_PT
dc.subjectMaximum power point trackingpt_PT
dc.subjectParticle swarm optimizationpt_PT
dc.subjectPower management strategypt_PT
dc.titlePower Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage Systempt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue5pt_PT
oaire.citation.startPage902pt_PT
oaire.citation.titleEnergiespt_PT
oaire.citation.volume12pt_PT
person.familyNameDomingos Faria
person.familyNamePombo
person.familyNameCalado
person.familyNamePinto Simões Mariano
person.givenNameJoão Pedro
person.givenNameJose
person.givenNameM. do Rosário
person.givenNameSílvio José
person.identifier.ciencia-id9618-F7B7-046E
person.identifier.ciencia-id7615-8E00-8084
person.identifier.ciencia-id9115-032B-370B
person.identifier.ciencia-id541F-E2B4-D66D
person.identifier.orcid0000-0001-5011-2201
person.identifier.orcid0000-0002-8727-0067
person.identifier.orcid0000-0002-5206-487X
person.identifier.orcid0000-0002-6102-5872
person.identifier.ridN-6809-2013
person.identifier.ridN-6834-2013
person.identifier.scopus-author-id34977533800
person.identifier.scopus-author-id9338016700
person.identifier.scopus-author-id35612517200
rcaap.embargofctCopyright cedido à editora no momento da publicaçãopt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationef235a52-d9cf-4108-a643-44226f973f58
relation.isAuthorOfPublicationcce2060a-24b8-441b-8896-cb4d0b3d3e83
relation.isAuthorOfPublication321aefdd-cd1f-4dd6-878e-c904b3ef89ab
relation.isAuthorOfPublicationcdbb9afc-4123-45ca-a946-89bafda7ab68
relation.isAuthorOfPublication.latestForDiscoverycdbb9afc-4123-45ca-a946-89bafda7ab68

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Energies_1_2019.pdf
Size:
17.39 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: