Repository logo
 
Publication

An ambient assisted living solution for mobile environments

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.contributor.advisorRodrigues, Joel José Puga Coelho
dc.contributor.authorHorta, Edgar Tavares da
dc.date.accessioned2018-07-27T15:52:24Z
dc.date.available2018-07-27T15:52:24Z
dc.date.issued2013-11-7
dc.date.submitted2013-10-18
dc.description.abstractAn Ambient Assisted Living (AAL) mobile health application solution with biofeedback based on body sensors is very useful to perform a data collection for diagnosis in patients whose clinical conditions are not favourable. This system allows comfort, mobility, and efficiency in all the process of data collection providing more confidence and operability. A physical fall may be considered something natural in the life span of a human being from birth to death. In a perfect scenario it would be possible to predict when a fall will occur in order to avoid it. Falls represent a high risk for senior people health. Those falls can cause fractures or injuries causing great dependence and debilitation to the elderly and even death in extreme cases. Falls can be detected by the accelerometer included in most of the available mobile phones or portable digital assistants (PDAs). To reverse this tendency, it can be obtained more accurate data for patients monitoring from the body sensors attached to the human body (such as, electrocardiogram (ECG), electromyography (EMG), blood volume pulse (BVP), electro dermal activity (EDA), and galvanic skin response (GSR)). Then, this dissertation reviews the related literature on this topic and introduces a mobile solution for falls prevention, detection, and biofeedback monitoring. The proposed system collects sensed data that is sent to a smartphone or tablet through Bluetooth. Mobile devices are used to process and display information graphically to users. The falls prevention system uses collected data from sensors in order to control and advice the patient or even to give instructions to treat an abnormal condition to reduce the falls risk. In cases of symptoms that last more time it can even detect a possible disease. The signal processing algorithms plays a key role in the fall prevention system. These algorithms in real time, through the capture of biofeedback data, are needed to extract relevant information from the signals detected to warn the patient. Monitoring and processing data from sensors is realized by a smartphone or tablet that will send warnings to users. All the process is performed in real time. These mobile devices are also used as a gateway to send the collected data to a Web service, which subsequently allows data storage and consultation. The proposed system is evaluated, demonstrated, and validated through a prototype and it is ready for use.eng
dc.identifier.tid201637774
dc.identifier.urihttp://hdl.handle.net/10400.6/5508
dc.language.isoengeng
dc.subjectBiofeedback Monitoringpor
dc.subjectBody Sensor Networkspor
dc.subjectFalls Detectionpor
dc.subjectFalls Preventionpor
dc.subjectHealthcare Applicationpor
dc.subjectM-Healthpor
dc.subjectMobile Computingpor
dc.subjectMobile Healthpor
dc.titleAn ambient assisted living solution for mobile environmentspor
dc.typemaster thesis
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PEst-OE%2FEEI%2FLA0008%2F2013/PT
oaire.fundingStream3599-PPCDT
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspor
rcaap.typemasterThesispor
relation.isProjectOfPublicationf575fa0e-031a-4870-adc0-c6412274c4c8
relation.isProjectOfPublication.latestForDiscoveryf575fa0e-031a-4870-adc0-c6412274c4c8
thesis.degree.name2º Ciclo em Engenharia Informáticapor

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2921_5828.pdf
Size:
5.62 MB
Format:
Adobe Portable Document Format