Publication
A Review of the Challenges of Using Deep Learning Algorithms to Support Decision-Making in Agricultural Activities
dc.contributor.author | Alibabaei, Khadijeh | |
dc.contributor.author | Gaspar, Pedro Dinis | |
dc.contributor.author | Lima, Tânia M. | |
dc.contributor.author | Campos, Maria Do Rosario Castiço De | |
dc.contributor.author | Girão, Inês | |
dc.contributor.author | Monteiro, Jorge | |
dc.contributor.author | Lopes, Carlos M. | |
dc.date.accessioned | 2022-03-25T16:42:45Z | |
dc.date.available | 2022-03-25T16:42:45Z | |
dc.date.issued | 2022-01-28 | |
dc.description.abstract | Deep Learning has been successfully applied to image recognition, speech recognition, and natural language processing in recent years. Therefore, there has been an incentive to apply it in other fields as well. The field of agriculture is one of the most important fields in which the application of deep learning still needs to be explored, as it has a direct impact on human well-being. In particular, there is a need to explore how deep learning models can be used as a tool for optimal planting, land use, yield improvement, production/disease/pest control, and other activities. The vast amount of data received from sensors in smart farms makes it possible to use deep learning as a model for decision-making in this field. In agriculture, no two environments are exactly alike, which makes testing, validating, and successfully implementing such technologies much more complex than in most other industries. This paper reviews some recent scientific developments in the field of deep learning that have been applied to agriculture, and highlights some challenges and potential solutions using deep learning algorithms in agriculture. The results in this paper indicate that by employing new methods from deep learning, higher performance in terms of accuracy and lower inference time can be achieved, and the models can be made useful in real-world applications. Finally, some opportunities for future research in this area are suggested. | pt_PT |
dc.description.sponsorship | This work is supported by the R&D Project BioDAgro—Sistema operacional inteligente de informação e suporte á decisão em AgroBiodiversidade, project PD20-00011, promoted by Fundação La Caixa and Fundação para a Ciência e a Tecnologia, taking place at the C-MAST-Centre for Mechanical and Aerospace Sciences and Technology, Department of Electromechanical Engineering of the University of Beira Interior, Covilhã, Portugal. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.3390/rs14030638 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.6/12116 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.relation | Centre for Mechanical and Aerospace Science and Technologies | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Agriculture | pt_PT |
dc.subject | Deep Learning | pt_PT |
dc.subject | Smart Farm | pt_PT |
dc.subject | Support Decision-Making Algorithms | pt_PT |
dc.title | A Review of the Challenges of Using Deep Learning Algorithms to Support Decision-Making in Agricultural Activities | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Centre for Mechanical and Aerospace Science and Technologies | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00151%2F2020/PT | |
oaire.citation.issue | 3 | pt_PT |
oaire.citation.startPage | 638 | pt_PT |
oaire.citation.title | Remote Sensing | pt_PT |
oaire.citation.volume | 14 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Alibabaei | |
person.familyName | Gaspar | |
person.familyName | Lima | |
person.familyName | campos | |
person.familyName | Girão | |
person.givenName | Khadijeh | |
person.givenName | Pedro Dinis | |
person.givenName | Tânia | |
person.givenName | maria do rosario castiço de | |
person.givenName | Inês | |
person.identifier | 1710267 | |
person.identifier.ciencia-id | 6111-9F05-2916 | |
person.identifier.ciencia-id | 771E-3B60-A936 | |
person.identifier.ciencia-id | AF16-B452-E272 | |
person.identifier.ciencia-id | E41F-18DD-8BEF | |
person.identifier.orcid | 0000-0002-2319-8211 | |
person.identifier.orcid | 0000-0003-1691-1709 | |
person.identifier.orcid | 0000-0002-7540-3854 | |
person.identifier.orcid | 0000-0003-0496-079X | |
person.identifier.orcid | 0000-0001-7201-0548 | |
person.identifier.rid | N-3016-2013 | |
person.identifier.rid | V-5052-2017 | |
person.identifier.scopus-author-id | 57419570900 | |
person.identifier.scopus-author-id | 48661120000 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 42cdea19-a0b8-4e67-89cd-405635dede48 | |
relation.isAuthorOfPublication | b69e2ba0-43af-4cf7-873e-090fd9fc6c94 | |
relation.isAuthorOfPublication | ef58bc1e-8e06-46cc-93e3-bba8e6ed8388 | |
relation.isAuthorOfPublication | cd6ab8e2-dfc2-4e7a-b203-3fbe28d4809f | |
relation.isAuthorOfPublication | 594fcbad-016b-49a4-b3c9-ca0579087526 | |
relation.isAuthorOfPublication.latestForDiscovery | 594fcbad-016b-49a4-b3c9-ca0579087526 | |
relation.isProjectOfPublication | c1aeadcb-d7fa-4d70-959a-2447dc0b2276 | |
relation.isProjectOfPublication.latestForDiscovery | c1aeadcb-d7fa-4d70-959a-2447dc0b2276 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- IJI0044-A Review of the Challenges of Using Deep Learning Algorithms.pdf
- Size:
- 7 MB
- Format:
- Adobe Portable Document Format