Repository logo
 
Publication

Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features

dc.contributor.authorRodrigues, Rafael
dc.contributor.authorQuijano-Roy, Susana
dc.contributor.authorCarlier, Robert-Yves
dc.contributor.authorPinheiro, Antonio M. G.
dc.date.accessioned2022-07-11T08:48:04Z
dc.date.available2022-07-11T08:48:04Z
dc.date.issued2022-10
dc.description(C) 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.pt_PT
dc.description.abstractMagnetic Resonance Imaging (MRI) is a non-invasive tool for the clinical assessment of low-prevalence neuromuscular disorders. Automated diagnosis methods might reduce the need for biopsies and provide valuable information on disease follow-up. In this paper, three methods are proposed to classify target muscles in Collagen VI-related myopathy cases, based on their degree of involvement, notably a Convolutional Neural Network, a Fully Connected Network to classify texture features, and a hybrid method combining the two feature sets. The proposed methods were evaluated on axial T1-weighted Turbo Spin-Echo MRI from 26 subjects, including Ullrich Congenital Muscular Dystrophy and Bethlem Myopathy patients at different evolution stages. The hybrid model achieved the best cross-validation results, with a global accuracy of 93.8%, and F-scores of 0.99, 0.82, and 0.95, for healthy, mild and moderate/severe cases, respectively.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/12272
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationTexture Analysis of Magnetic Resonance Images for Diagnosis and Monitoring of Neuromuscular Diseases
dc.relationInstituto de Telecomunicações
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectCollagen VI-related myopathypt_PT
dc.subjectMRIpt_PT
dc.subjectComputer-aided diagnosispt_PT
dc.subjectTexture analysispt_PT
dc.subjectConvolutional Neural Networkspt_PT
dc.titleSeverity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture featurespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleTexture Analysis of Magnetic Resonance Images for Diagnosis and Monitoring of Neuromuscular Diseases
oaire.awardTitleInstituto de Telecomunicações
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/OE/SFRH%2FBD%2F130858%2F2017/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT
oaire.citation.conferencePlaceBordeaux, Francept_PT
oaire.citation.title29th IEEE International Conference on Image Processing (IEEE ICIP)pt_PT
oaire.fundingStreamOE
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMendes Rodrigues
person.familyNameQuijano-Roy
person.familyNamePinheiro
person.givenNameJorge Rafael
person.givenNameSusana
person.givenNameAntonio
person.identifier.ciencia-idD112-43CA-98E0
person.identifier.ciencia-id2218-265E-17D2
person.identifier.orcid0000-0002-9481-9601
person.identifier.orcid0000-0002-8503-6111
person.identifier.orcid0000-0002-5968-9901
person.identifier.ridB-2723-2012
person.identifier.scopus-author-id8420644500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication16431ade-58b1-4db3-849b-718dd28e15bf
relation.isAuthorOfPublication8e15338c-fd50-4495-9b2c-4929ddf3016c
relation.isAuthorOfPublication94e6047a-198a-41bd-bd6c-b0f21708d8f9
relation.isAuthorOfPublication.latestForDiscovery94e6047a-198a-41bd-bd6c-b0f21708d8f9
relation.isProjectOfPublication578a5e2d-cd15-45fe-8a4f-b0449117a64f
relation.isProjectOfPublication5a9bd4c8-57a9-46c4-95dc-a5e5c220c117
relation.isProjectOfPublication.latestForDiscovery5a9bd4c8-57a9-46c4-95dc-a5e5c220c117

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ICIP_2022_3242_Rodrigues_et_al.pdf
Size:
360.36 KB
Format:
Adobe Portable Document Format