Publication
Turbulence Modeling Insights into Supercritical Nitrogen Mixing Layers
dc.contributor.author | Magalhães, Leandro | |
dc.contributor.author | Carvalho, Francisco | |
dc.contributor.author | Silva, A. R. R. | |
dc.contributor.author | Barata, Jorge M M | |
dc.date.accessioned | 2020-04-07T08:40:41Z | |
dc.date.available | 2020-04-07T08:40:41Z | |
dc.date.issued | 2020-04-01 | |
dc.description.abstract | In Liquid Rocket Engines, higher combustion efficiencies come at the cost of the propellants exceeding their critical point conditions and entering the supercritical domain. The term fluid is used because, under these conditions, there is no longer a clear distinction between a liquid and a gas phase. The non-conventional behavior of thermophysical properties makes the modeling of supercritical fluid flows a most challenging task. In the present work, a Reynolds Averaged Navier Stokes (RANS) computational method following an incompressible but variable density approach is devised on which the performance of several turbulence models is compared in conjunction with a high accuracy multi-parameter equation of state. In addition, a suitable methodology to describe transport properties accounting for dense fluid corrections is applied. The results are validated against experimental data, making it clear that there is no trend between turbulence model complexity and the quality of the produced results. For several instances, one- and two-equation turbulence models produce similar results. Finally, considerations about the applicability of the tested turbulence models in supercritical simulations are given based on the results and the structural nature of each model. | pt_PT |
dc.description.sponsorship | Aeronautics and Astronautics Research Center (AEROG), Laboratório Associado em Energia, Transportes e Aeronáutica (LAETA) e Fundação para a Ciência e Tecnologia (FCT) | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Magalhães, L.; Carvalho, F.; Silva, A.; Barata, J. Turbulence Modeling Insights into Supercritical Nitrogen Mixing Layers. Energies 2020, 13, 1586. | pt_PT |
dc.identifier.doi | 10.3390/en13071586 | pt_PT |
dc.identifier.issn | 1996-1073 | |
dc.identifier.uri | http://hdl.handle.net/10400.6/10256 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | MDPI | pt_PT |
dc.relation | alterado para: “Contribution to the Physical Understanding of Supercritical Fluid Flows: a Computational Perspective”. Computational methods for jet/spray characterization: transcritical and supercritical conditions | |
dc.relation | Associate Laboratory of Energy, Transports and Aeronautics | |
dc.relation | Associate Laboratory of Energy, Transports and Aeronautics | |
dc.relation.publisherversion | https://www.mdpi.com/1996-1073/13/7/1586 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Turbulence modeling | pt_PT |
dc.subject | Supercritical injection | pt_PT |
dc.subject | Liquid Rocket Engines | pt_PT |
dc.title | Turbulence Modeling Insights into Supercritical Nitrogen Mixing Layers | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | alterado para: “Contribution to the Physical Understanding of Supercritical Fluid Flows: a Computational Perspective”. Computational methods for jet/spray characterization: transcritical and supercritical conditions | |
oaire.awardTitle | Associate Laboratory of Energy, Transports and Aeronautics | |
oaire.awardTitle | Associate Laboratory of Energy, Transports and Aeronautics | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F136381%2F2018/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEMS%2F50022%2F2019/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PT | |
oaire.citation.issue | 7 | pt_PT |
oaire.citation.startPage | 1586 | pt_PT |
oaire.citation.title | Energies | pt_PT |
oaire.citation.volume | 13 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Magalhães | |
person.familyName | Carvalho | |
person.familyName | Resende Rodrigues da Silva | |
person.familyName | Martins Barata | |
person.givenName | Leandro | |
person.givenName | Francisco | |
person.givenName | André | |
person.givenName | Jorge Manuel | |
person.identifier | 2611303 | |
person.identifier | J-4185-2012 | |
person.identifier | hFY_5JYAAAAJ&hl | |
person.identifier.ciencia-id | 571C-5641-9D78 | |
person.identifier.ciencia-id | 8219-4B2B-E1C7 | |
person.identifier.ciencia-id | F611-BBCC-DAA8 | |
person.identifier.orcid | 0000-0002-1256-9689 | |
person.identifier.orcid | 0000-0002-3069-8345 | |
person.identifier.orcid | 0000-0002-4901-7140 | |
person.identifier.orcid | 0000-0001-9014-5008 | |
person.identifier.scopus-author-id | 11440407500 | |
person.identifier.scopus-author-id | 11439470600 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | fd0c95ba-3a60-42d1-a382-f37a714962b9 | |
relation.isAuthorOfPublication | 0532a78c-5b52-4815-8172-ff60903924fc | |
relation.isAuthorOfPublication | 908e150d-3890-457c-b5da-09c84671cb93 | |
relation.isAuthorOfPublication | c4346556-933d-4f70-9b6d-8e1670d57be6 | |
relation.isAuthorOfPublication.latestForDiscovery | 908e150d-3890-457c-b5da-09c84671cb93 | |
relation.isProjectOfPublication | 85282b9c-1a98-4958-9e7f-e94c1835cadd | |
relation.isProjectOfPublication | 64099087-6b75-4ef4-81c8-aa96db4b7829 | |
relation.isProjectOfPublication | d3f48e72-49da-44e7-b054-cbdb0644e04d | |
relation.isProjectOfPublication.latestForDiscovery | 64099087-6b75-4ef4-81c8-aa96db4b7829 |