Repository logo
 
No Thumbnail Available
Publication

Machine Learning for the Prediction of App Energy Consumption from Appstore Data

Use this identifier to reference this record.
Name:Description:Size:Format: 
9421_19909.pdf2 MBAdobe PDF Download

Abstract(s)

The mobile market has seen tremendous development throughout the past few years both in terms of hardware and the software that is available for the devices. Despite this, the batteries that power these devices have not seen major improvements and have been unable to accompany the progress seen in this field. Due to this phenomenon, researchers have been showing a growing interest in the development of green computing solutions in order to spend the least amount of energy possible when using mobile devices. This as presented itself in a plethora of ways, from the accurate evaluation of the energy consumption of applications through the use of energy models and profilers to the assessment and development of better coding practices with energy conservation as the main focus. However, there have been few to no studies regarding the development of user-side solutions to help solve this problem. In order to fill this gap in research this study focuses on providing a machine learning solution with the intent of identifying links between the information available in the store page of an application and its energy consumption to develop an a priori method for the classification and certification of mobile applications. Hence the main contribution of this project resides on the previously mentioned machine learning model, adapted to the Aptoide appstore and mainly targeting applications that belong to the games category, given that these have the highest volume of downloads and interest by the users of the appstore.
O mercado dos dispositivos móveis tem visto um tremendo desenvolvimento nos últimos anos tanto em termos de hardware como de software que é disponibilizado para os dispositivos. Apesar disto, as baterias que abastecem estes dispositivos não têm tido melhorias e têm sido incapazes de acompanhar o progresso desta área. Devido a este fenómeno, os investigadores têm vindo a mostrar um interesse cada vez maior no ramo de soluções para computação verde de modo a gastar o mínimo de energia possível com dispositivos móveis. Isto gerou uma variedade de respostas, desde determinar o consumo energético de uma aplicação de forma acertada com recurso a modelos e profilers energéticos até ao desenvolvimento de práticas de codificação adequadas para a conservação da energia dos dispositivos. No entanto, têm havido poucos estudos realizados sobre soluções destinadas aos utilizadores que ajudem a resolver este problema. De modo a preencher esta lacuna, este estudo foca-se no desenvolvimento de uma solução de aprendizagem automática que determine as conexões entre a informação sobre uma aplicação na appstore e o seu consumo energético. Sendo assim, o principal contributo deste projeto reside na aprendizagem automática mencionada anteriormente, adaptada para a appstore Aptoide e com principal foco nas aplicações pertencentes à categoria de jogos sendo que estas compõem grande parte do volume de descarregamentos da plataforma.

Description

Keywords

Aprendizagem Automática Aptoide Computação Verde Consumo Energético Energia Móvel

Citation

Research Projects

Organizational Units

Journal Issue