Repository logo
 
Publication

Preliminary results of peach detection in images applying convolutional neuronal network

dc.contributor.authorAssunção, Eduardo Timóteo
dc.contributor.authorProença, H.
dc.contributor.authorVeiros, André
dc.contributor.authorMesquita, Ricardo
dc.contributor.authorGaspar, Pedro Dinis
dc.date.accessioned2020-07-13T10:40:33Z
dc.date.available2020-07-13T10:40:33Z
dc.date.issued2019-11
dc.description.abstractThe fruit detection part is very important for a good performance in a yield estimation system. This paper presents the preliminary results using the object detection Faster R-CNN method in the peaches images. The aim is evaluate the method performance in the detection of peach RGB images. Images acquired in an orchard were used. Although this method of object detection has been applied in other studies to detect fruits, according to the literature, it has not been used to detect peaches. The results, although preliminary, show a great potential of using the method to detect peach.pt_PT
dc.description.sponsorshipEste trabalho de investigação é financiado pelo projeto PrunusBot - Sistema robótico aéreo autónomo de pulverização controlada e previsão de produção frutícola, Operação n.º PDR2020-101-031358 (líder), Consórcio n.º 340, Iniciativa n.º 140, promovido pelo PDR2020 e co-financiado pelo FEADER e União Europeia no âmbito do Programa Portugal 2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/10357
dc.language.isoporpt_PT
dc.publisherICEUBI2019 paper ID: 182pt_PT
dc.subjectPeachpt_PT
dc.subjectImage detectionpt_PT
dc.subjectConvolutional neuronal networkpt_PT
dc.titlePreliminary results of peach detection in images applying convolutional neuronal networkpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleICEUBI2019pt_PT
person.familyNameAssunção
person.familyNameProença
person.familyNameVeiros
person.familyNameMesquita
person.familyNameGaspar
person.givenNameEduardo Timóteo
person.givenNameHugo
person.givenNameAndré
person.givenNameRicardo
person.givenNamePedro Dinis
person.identifier1153590
person.identifier.ciencia-id421E-B6CA-E3A1
person.identifier.ciencia-idED16-81E7-0319
person.identifier.ciencia-id6111-9F05-2916
person.identifier.orcid0000-0001-6027-7763
person.identifier.orcid0000-0003-2551-8570
person.identifier.orcid0000-0001-6901-795X
person.identifier.orcid0000-0002-8599-6737
person.identifier.orcid0000-0003-1691-1709
person.identifier.ridF-9499-2010
person.identifier.ridN-3016-2013
person.identifier.scopus-author-id14016540600
person.identifier.scopus-author-id57419570900
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb7f58757-7f13-41ff-9e05-cfbbe587172a
relation.isAuthorOfPublication16ca2fc4-5379-43a6-8867-ba63bd9289e0
relation.isAuthorOfPublication28246162-71e5-4d51-82c5-229db0aad6aa
relation.isAuthorOfPublicationb261d224-8bab-47e6-b9db-ad3c830d2cd4
relation.isAuthorOfPublicationb69e2ba0-43af-4cf7-873e-090fd9fc6c94
relation.isAuthorOfPublication.latestForDiscoveryb7f58757-7f13-41ff-9e05-cfbbe587172a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ICO0110.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format