Publication
GPU-Based De- tection of Protein Cavities using Gaussian Surfaces
dc.contributor.author | Dias, Sérgio | |
dc.contributor.author | Martins, Ana Mafalda | |
dc.contributor.author | Nguyen, Quoc | |
dc.contributor.author | Gomes, Abel | |
dc.date.accessioned | 2020-01-15T11:27:10Z | |
dc.date.available | 2020-01-15T11:27:10Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Protein cavities play a key role in biomolecular recognition and function, particularly in protein-ligand interactions, as usual in drug discovery and design. Grid-based cavity detection methods aim at finding cavities as aggregates of grid nodes outside the molecule, under the condition that such cavities are bracketed by nodes on the molecule surface along a set of directions (not necessarily aligned with coordinate axes). Therefore, these methods are sensitive to scanning directions, a problem that we call cavity ground-and-walls ambiguity, i.e., they depend on the position and orientation of the protein in the discretized domain. Also, it is hard to distinguish grid nodes belonging to protein cavities amongst all those outside the protein, a problem that we call cavity ceiling ambiguity. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | 2017-Dias | pt_PT |
dc.identifier.doi | 10.1186/s12859-017-1913-4 | pt_PT |
dc.identifier.issn | 1471-2105 | |
dc.identifier.uri | http://hdl.handle.net/10400.6/8304 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | BMC | pt_PT |
dc.relation | SHAPE REPRESENTATION AND RECOGNITION METHODS IN MOLECULAR DOCKING | |
dc.relation.publisherversion | https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1913-4 | pt_PT |
dc.subject | Protein cavity | pt_PT |
dc.subject | Protein pocket | pt_PT |
dc.subject | Geometric detection of pockets | pt_PT |
dc.subject | GPU computing | pt_PT |
dc.title | GPU-Based De- tection of Protein Cavities using Gaussian Surfaces | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | SHAPE REPRESENTATION AND RECOGNITION METHODS IN MOLECULAR DOCKING | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/FARH/SFRH%2FBD%2F69829%2F2010/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/UTAP-EXPL%2FQEQ-COM%2F0019%2F2014/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F50008%2F2013/PT | |
oaire.citation.endPage | 10 | pt_PT |
oaire.citation.issue | 493 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | BMC Bioinformatics | pt_PT |
oaire.citation.volume | 18 | pt_PT |
oaire.fundingStream | FARH | |
oaire.fundingStream | 3599-PPCDT | |
oaire.fundingStream | 5876 | |
person.familyName | Dias | |
person.familyName | Martins | |
person.familyName | Padrão Gomes | |
person.givenName | Sérgio | |
person.givenName | Ana Mafalda | |
person.givenName | Abel João | |
person.identifier | J-8234-2017 | |
person.identifier | H-9602-2014 | |
person.identifier.ciencia-id | 0512-AF85-D322 | |
person.identifier.ciencia-id | FA1E-2B03-AB86 | |
person.identifier.ciencia-id | EC1D-4ACD-6A62 | |
person.identifier.orcid | 0000-0002-9752-9386 | |
person.identifier.orcid | 0000-0002-7832-4430 | |
person.identifier.orcid | 0000-0002-5804-5717 | |
person.identifier.scopus-author-id | 36668366300 | |
person.identifier.scopus-author-id | 14054576600 | |
person.identifier.scopus-author-id | 8325080300 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | d2fc9f99-653f-4cf9-a887-6e83006abb45 | |
relation.isAuthorOfPublication | 38c89448-1355-4bd9-aa7b-7c665128722d | |
relation.isAuthorOfPublication | f3343549-f3b7-4eb3-a67c-e3bea4c8358e | |
relation.isAuthorOfPublication.latestForDiscovery | f3343549-f3b7-4eb3-a67c-e3bea4c8358e | |
relation.isProjectOfPublication | 01cc1217-9dc9-4273-b2cd-e794e6b12a9e | |
relation.isProjectOfPublication | 034e7c22-b066-4421-aec6-81294d063333 | |
relation.isProjectOfPublication | 6051e784-a228-452a-ad8e-90f4372bc6bf | |
relation.isProjectOfPublication.latestForDiscovery | 034e7c22-b066-4421-aec6-81294d063333 |