Publication
Automated Weed Detection Systems: A Review
dc.contributor.author | Shanmugam, Saraswathi | |
dc.contributor.author | Assunção, Eduardo Timóteo | |
dc.contributor.author | Mesquita, Ricardo | |
dc.contributor.author | Veiros, André | |
dc.contributor.author | Gaspar, Pedro Dinis | |
dc.date.accessioned | 2020-07-10T09:44:36Z | |
dc.date.available | 2020-07-10T09:44:36Z | |
dc.date.issued | 2020-06-02 | |
dc.description.abstract | A weed plant can be described as a plant that is unwanted at a specific location at a given time. Farmers have fought against the weed populations for as long as land has been used for food production. In conventional agriculture this weed control contributes a considerable amount to the overall cost of the produce. Automatic weed detection is one of the viable solutions for efficient reduction or exclusion of chemicals in crop production. Research studies have been focusing and combining modern approaches and proposed techniques which automatically analyze and evaluate segmented weed images. This study discusses and compares the weed control methods and gives special attention in describing the current research in automating the weed detection and control. | pt_PT |
dc.description.sponsorship | This study is within the activities of project PrunusBot - Sistema robótico aéreo autónomo de pulverização controlada e previsão de produção frutícola (autonomous unmanned aerial robotic system for controlled spraying and prediction of fruit production), Operation n.° PDR2020-101-031358 (líder), Consortium n.° 340, Initiative n.° 140 promoted by PDR2020 and co-financed by FEADER under the Portugal 2020 initiative. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Saraswathi Shanmugam, Eduardo Assunção, Ricardo Mesquita, André Veiros, and Pedro D. Gaspar, (2020), “Automated Weed Detection Systems: A Review” in International Congress on Engineering — Engineering for Evolution, KnE Engineering, pages 271–284. DOI 10.18502/keg.v5i6.7046 | pt_PT |
dc.identifier.doi | doi.org/10.18502/keg.v5i6.7046 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.6/10343 | |
dc.language.iso | eng | pt_PT |
dc.publisher | Publishing services provided by Knowledge E | pt_PT |
dc.subject | Detection | pt_PT |
dc.subject | Weed | pt_PT |
dc.subject | Agriculture 4.0 | pt_PT |
dc.subject | Computational vision | pt_PT |
dc.subject | Robotics | pt_PT |
dc.title | Automated Weed Detection Systems: A Review | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 284 | pt_PT |
oaire.citation.startPage | 271 | pt_PT |
oaire.citation.title | Knowledge E | pt_PT |
person.familyName | shanmugam | |
person.familyName | Assunção | |
person.familyName | Mesquita | |
person.familyName | Veiros | |
person.familyName | Gaspar | |
person.givenName | saraswathi | |
person.givenName | Eduardo Timóteo | |
person.givenName | Ricardo | |
person.givenName | André | |
person.givenName | Pedro Dinis | |
person.identifier.ciencia-id | 421E-B6CA-E3A1 | |
person.identifier.ciencia-id | 6111-9F05-2916 | |
person.identifier.orcid | 0000-0003-2569-3256 | |
person.identifier.orcid | 0000-0001-6027-7763 | |
person.identifier.orcid | 0000-0002-8599-6737 | |
person.identifier.orcid | 0000-0001-6901-795X | |
person.identifier.orcid | 0000-0003-1691-1709 | |
person.identifier.rid | N-3016-2013 | |
person.identifier.scopus-author-id | 57419570900 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | f5c385d3-a5af-44c1-b172-f2001e02f44b | |
relation.isAuthorOfPublication | b7f58757-7f13-41ff-9e05-cfbbe587172a | |
relation.isAuthorOfPublication | b261d224-8bab-47e6-b9db-ad3c830d2cd4 | |
relation.isAuthorOfPublication | 28246162-71e5-4d51-82c5-229db0aad6aa | |
relation.isAuthorOfPublication | b69e2ba0-43af-4cf7-873e-090fd9fc6c94 | |
relation.isAuthorOfPublication.latestForDiscovery | 28246162-71e5-4d51-82c5-229db0aad6aa |
Files
Original bundle
1 - 1 of 1