Repository logo
 
Publication

On the stability of point cloud machine learning based coding

dc.contributor.authorPrazeres, João
dc.contributor.authorRodrigues, Rafael
dc.contributor.authorPereira, Manuela
dc.contributor.authorPinheiro, Antonio M. G.
dc.date.accessioned2023-03-07T12:35:23Z
dc.date.available2023-03-07T12:35:23Z
dc.date.issued2022-10-20
dc.description.abstractThis paper analyses the performance of two of the most well known deep learning-based point cloud coding solutions, considering the training conditions. Several works have recently been published on point cloud machine learning-based coding, following the recent tendency on image coding. These codecs are typically seen as a set of predefined trained machines. However, the performance of such models is usually very dependent of their training, and little work has been considered on the stability of the codecs’ performance, as well as the possible influence of the loss function parameters, and the increasing number of training epochs. The evaluation experiments are supported in a generic test set with point clouds representing objects and also more complex scenes, using the point to point metric (PSNR D1), as several studies revealed the good quality representation of this geometry-only point cloud metric.pt_PT
dc.description.sponsorshipResearch funded by the Portuguese FCT-Fundação para a Ciência e Tecnologia under the project UIDB/50008/2020, PLive X-0017-LX-20, and by operation Centro-01-0145-FEDER-000019 - C4 - Centro de Competencias em Cloud Computing.
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.doi10.1109/EUVIP53989.2022.9922676pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/13277
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationInstituto de Telecomunicações
dc.relation.publisherversionhttps://ieeexplore.ieee.org/abstract/document/9922676pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectPoint cloud codingpt_PT
dc.subjectMachine learning-based codecspt_PT
dc.subjectPoint cloud compressionpt_PT
dc.subjectTrainingpt_PT
dc.subjectCodecspt_PT
dc.titleOn the stability of point cloud machine learning based codingpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleInstituto de Telecomunicações
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT
oaire.citation.conferencePlaceLisbon, Portugalpt_PT
oaire.citation.endPage6pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2022 10th European Workshop on Visual Information Processing (EUVIP)pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameCasanova Prazeres
person.familyNameMendes Rodrigues
person.familyNamePereira
person.familyNamePinheiro
person.givenNameJoão Pedro
person.givenNameJorge Rafael
person.givenNameManuela
person.givenNameAntonio
person.identifier.ciencia-id441A-CABD-41E0
person.identifier.ciencia-idD112-43CA-98E0
person.identifier.ciencia-id0515-7E9C-B97F
person.identifier.ciencia-id2218-265E-17D2
person.identifier.orcid0000-0002-5553-0231
person.identifier.orcid0000-0002-9481-9601
person.identifier.orcid0000-0002-8648-6464
person.identifier.orcid0000-0002-5968-9901
person.identifier.ridB-2723-2012
person.identifier.scopus-author-id35248984200
person.identifier.scopus-author-id8420644500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication2eea9b7c-9999-4864-aae3-4a58e5aa999e
relation.isAuthorOfPublication16431ade-58b1-4db3-849b-718dd28e15bf
relation.isAuthorOfPublicationb89b2bbc-525d-4a6d-8a41-6ad7b81fa511
relation.isAuthorOfPublication94e6047a-198a-41bd-bd6c-b0f21708d8f9
relation.isAuthorOfPublication.latestForDiscoveryb89b2bbc-525d-4a6d-8a41-6ad7b81fa511
relation.isProjectOfPublication5a9bd4c8-57a9-46c4-95dc-a5e5c220c117
relation.isProjectOfPublication.latestForDiscovery5a9bd4c8-57a9-46c4-95dc-a5e5c220c117

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EUVIP2022_OTSOPCMLBC.pdf
Size:
13.64 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: