Repository logo
 
Publication

Decision Support System to Assign Price Rebates of Fresh Horticultural Products Based on Quality Decay

dc.contributor.authorMatos, Cláudia
dc.contributor.authorMaciel, Vinicius Biasutti Pitol
dc.contributor.authorFernandez, Carlos M.
dc.contributor.authorLima, Tânia M.
dc.contributor.authorGaspar, Pedro Dinis
dc.date.accessioned2022-01-07T12:55:45Z
dc.date.available2022-01-07T12:55:45Z
dc.date.issued2021
dc.description.abstractHorticultural products ripeness brings out features like flavor, texture, aroma, skin changes and finally, generates waste due to its spoilage. To avoid or minimize it, many traders as supermarkets, mini-markets and groceriesmake changes in their fruit’s prices just before expiration date. However, customers’ acceptability changes during the products shelf life, which leads to selling decrease along products quality decay and, consequently, profit decrease. This behavior establishes a challenging scenario to manage stock replenishment and pricing strategies. Many studies present inventory management model for perishable food products but considering only physical quantity deterioration whereas some few authors discuss dynamic pricing, considering quantity and quality deterioration simultaneously. Aiming the optimization of profit in traders, this work introduces a decision support system to assign price rebates of fresh horticultural products based on quality decay. To achieve this goal, two methodologies were followed. The first one consists in using experimental test results formodeling purposes, based on Pontryagin’smaximum principle, using apple, banana and strawberry. The former consists in using questionnaire as sensitivity analysis of quality from customers’ perspective, bringing more reliability and criteria for modeling, since quality could be subjective. The result is a computational decision support system to predict the optimum price for a specific fruit during shelf life. The main objective is to extend the applicability of the computational tool in order to overcome challenges related to limitations of logistics, allowing mini-markets and groceries use this software.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-030-72929-5_23pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/11575
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationCentre for Mechanical and Aerospace Science and Technologies
dc.subjectFood wastept_PT
dc.subjectMathematical modellingpt_PT
dc.subjectPerishable productspt_PT
dc.subjectDecision support systempt_PT
dc.subjectPrice rebatespt_PT
dc.subjectQuality decaypt_PT
dc.titleDecision Support System to Assign Price Rebates of Fresh Horticultural Products Based on Quality Decaypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre for Mechanical and Aerospace Science and Technologies
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00151%2F2020/PT
oaire.citation.endPage497pt_PT
oaire.citation.startPage487pt_PT
oaire.citation.volume18pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameFerreira Mosquera Fernandez
person.familyNameLima
person.familyNameGaspar
person.givenNameCarlos Fernando
person.givenNameTânia
person.givenNamePedro Dinis
person.identifier1710267
person.identifier.ciencia-id3315-AEDB-37B8
person.identifier.ciencia-id771E-3B60-A936
person.identifier.ciencia-id6111-9F05-2916
person.identifier.orcid0000-0002-6947-7902
person.identifier.orcid0000-0002-7540-3854
person.identifier.orcid0000-0003-1691-1709
person.identifier.ridV-5052-2017
person.identifier.ridN-3016-2013
person.identifier.scopus-author-id48661120000
person.identifier.scopus-author-id57419570900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.embargofct© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021pt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication4e1c0f77-aea3-47f4-8ad6-55acd6ce8b6f
relation.isAuthorOfPublicationef58bc1e-8e06-46cc-93e3-bba8e6ed8388
relation.isAuthorOfPublicationb69e2ba0-43af-4cf7-873e-090fd9fc6c94
relation.isAuthorOfPublication.latestForDiscoveryef58bc1e-8e06-46cc-93e3-bba8e6ed8388
relation.isProjectOfPublicationc1aeadcb-d7fa-4d70-959a-2447dc0b2276
relation.isProjectOfPublication.latestForDiscoveryc1aeadcb-d7fa-4d70-959a-2447dc0b2276

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Springer_Matos_2021.pdf
Size:
526.91 KB
Format:
Adobe Portable Document Format