Repository logo
 
Publication

Collaborative swarm intelligence to estimate PV parameters

dc.contributor.authorNunes, H.G.G.
dc.contributor.authorPombo, José Álvaro Nunes
dc.contributor.authorBento, P.M.R.
dc.contributor.authorMariano, S.
dc.contributor.authorCalado, M. Do Rosário
dc.date.accessioned2019-04-29T16:30:26Z
dc.date.available2019-04-29T16:30:26Z
dc.date.issued2019-03
dc.description.abstractTo properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the respective mathematical models that characterize the PV cells or modules behavior. This is currently a hot research topic that has attracted the attention of numerous researchers. In this paper, we propose a new hybrid methodology that combines diversification and intensification mechanisms from different metaheuristics (MHs) to estimate PV parameters precisely. The proposed methodology has the capacity to adapt to the specific optimization problem and maintain diversity when building solutions, thus mitigating premature convergence and population stagnation. This methodology can incorporate several MHs (two or more swarms) with different potentialities, enabling a good balance between diversification and intensification mechanisms. Furthermore, it is able to explore a multidimensional search space in different regions simultaneously. To validate its performance, the proposed methodology was compared with other wellestablished MHs in several benchmark functions, and used to estimate PV parameters in single and double-diode models in two case studies, the first using standard literature data, and the second using measured data from a real application with and without the occurrence of partial shading. The proposed methodology was able to find highly accurate solutions with reduced computational cost and high reliability. Comparisons with the other MHs demonstrate that the proposed methodology presents a very competitive performance when solving the PV parameter estimation problem.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.enconman.2019.02.003pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/7051
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectCollaborative swarm intelligencept_PT
dc.subjectHybrid metaheuristicpt_PT
dc.subjectParameter estimationpt_PT
dc.subjectSingle-diode modelpt_PT
dc.subjectDouble-diode modelpt_PT
dc.titleCollaborative swarm intelligence to estimate PV parameterspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage890pt_PT
oaire.citation.startPage866pt_PT
oaire.citation.titleEnergy Conversion and Managementpt_PT
oaire.citation.volume185pt_PT
person.familyNameGarcia Nunes
person.familyNamePombo
person.familyNameRocha Bento
person.familyNamePinto Simões Mariano
person.familyNameCalado
person.givenNameHugo Gabriel
person.givenNameJose
person.givenNamePedro Miguel
person.givenNameSílvio José
person.givenNameM. do Rosário
person.identifier.ciencia-id7615-8E00-8084
person.identifier.ciencia-id541F-E2B4-D66D
person.identifier.ciencia-id9115-032B-370B
person.identifier.orcid0000-0002-6029-7032
person.identifier.orcid0000-0002-8727-0067
person.identifier.orcid0000-0002-9102-7086
person.identifier.orcid0000-0002-6102-5872
person.identifier.orcid0000-0002-5206-487X
person.identifier.ridV-4684-2018
person.identifier.ridN-6834-2013
person.identifier.ridN-6809-2013
person.identifier.scopus-author-id57195107686
person.identifier.scopus-author-id34977533800
person.identifier.scopus-author-id57196424786
person.identifier.scopus-author-id35612517200
person.identifier.scopus-author-id9338016700
rcaap.embargofctCopyright cedido à editora no momento da publicaçãopt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication40ed2120-90cf-41fa-84fc-d1c85cf8d848
relation.isAuthorOfPublicationcce2060a-24b8-441b-8896-cb4d0b3d3e83
relation.isAuthorOfPublication4a9912dc-95bc-4e6e-b012-a89eb6e2dfcb
relation.isAuthorOfPublicationcdbb9afc-4123-45ca-a946-89bafda7ab68
relation.isAuthorOfPublication321aefdd-cd1f-4dd6-878e-c904b3ef89ab
relation.isAuthorOfPublication.latestForDiscoverycce2060a-24b8-441b-8896-cb4d0b3d3e83

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ECM_11272_publicado.pdf
Size:
4.36 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: