Name: | Description: | Size: | Format: | |
---|---|---|---|---|
17.54 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Mass is a key factor during the design of an aircraft. Since the wing is one of the heaviest
components, an accurate prediction of its mass is essential for a correct definition of its
size and evaluation of the aircraft’s performance. Composite materials usually compose
aircraft structures due to their high specific strength and ease of manufacture. By finding
the optimal stacking sequence and layer orientation, it is possible to minimize the mass
of components ensuring that constraints such as structural integrity and maximum
displacement are fulfilled. Many studies show that Evolutionary Algorithms combined
with Finite Element Analysis is a good approach to optimize composite structures
regarding layer composition and orientation.
This thesis describes the development of a tool that performs the structural optimization
of Unmanned Aerial Vehicles’ wings made of composite structures. The motivation for
this work lies in the need to improve the structural sizing method used by the University
of Beira Interior teams during the design phase for the Air Cargo Challenge competition.
Typically, the wing is a two-cell beam structure with sandwich skin, spar webs and
laminated spar caps. In the computational model, triangular plate elements are used to
represent both spar webs and the skin, and bar elements define the spar caps. For this
structure, the stacking sequence of the skin must be found as well as the number of layers
of each spar cap for minimum mass subject to failure and deflection (wing tip deflection
and twist) constraints.
To generate the mesh, the wings’ cross-section is divided into five sub-sections:
leading-edge, upper and lower surfaces between spar positions and leading and rear
spar webs. Based on the number of divisions and the spacing technique chosen for
each sub-section, the section nodes for the structural problem are computed. Since the
number of divisions and spacing technique of the cross-section are kept constant across
the span, the panel nodes are the result of the interpolation of the section nodes between
the extreme sections of each panel. After the node numbering process, the mesh is
defined panel-by-panel, generating triangular elements for the panel skin and webs of
both spars and linear elements for the spar caps. The loads are computed using the lifting
line theory and transferred to the mesh considering that they are applied on the web and
caps of the main spar. The solution uses MYSTRAN as the finite element solver to assess
failure criteria, and the Simple Genetic Algorithm from OpenMDAO to solve the integer
optimization problem.
Typically, the materials considered for the problem are orthotropic, including
unidirectional and bidirectional fabrics. Manufacturing constraints are addressed
considering symmetrical sandwich structures, in which the core is the central layer, and
by orienting the unidirectional fabric of the spar caps with the longitudinal direction of the panel. The maximum number of layers for each structure and the orientations
in which a fabric can be applied must be specified by the user. To reduce the number
of design variables, a database containing all possible arrangements of layer’s material
and orientation for each structure is generated. This method allows to fix the number of
design variables per panel to seven: stacking sequences of shell, main and rear spar webs,
and number of layers of each spar cap. Since this is a high demanding computational
optimization process, the parallel processing option available at OpenMDAO is activated,
allowing to simultaneously analyze more than one individual of a generation.
As a case study, the central panel of the 2019 Air Cargo Challenge aircraft wing from
AERO@UBI is optimized, testing the optimization tool. A reduction of 16.5% on the
panel’s mass is achieved during the simulations. From the different optimization settings
tested it is considered that a mutation rate of 0.05, population size of 30 individuals
and 20 generations is the combination that best suit this optimization problem. From
the results obtained, it is recommended to implement an additional constraint able
of measuring the difference between the deformed and the original shapes to prevent
excessive aerodynamic losses.
A massa é um parâmetro essencial durante a fase the projeto de uma aeronave. Uma vez que a asa é um dos componentes mais pesados, uma previsão precisa da sua massa é essencial para a correta definição do seu tamanho e avaliação do desempenho da aeronave. Materiais compósitos compõem frequentemente as estruturas das aeronaves devido à sua elevada resistência específica e facilidade de manufatura. Encontrando a sequência de empilhamento ótima é possível minimizar a massa dos componentes assegurando que constrangimentos como integridade estrutural e deslocamento máximo são cumpridos. Vários estudos mostram que algoritmos evolucionários combinados com análises por elementos finitos são uma boa abordagem para otimizar estruturas em materiais compósitos no que respeita à composição e orientação de cada camada. Esta dissertação descreve o desenvolvimento de uma ferramenta que executa otimização de asas com estruturas em materiais compósitos de veículos aéreos não tripulados. A motivação para este trabalho assenta na necessidade de melhorar o método de dimensionamento estrutural usado pelas equipas da Universidade da Beira Interior durante a fase de projeto para a competição Air Cargo Challenge. Tipicamente, a asa é uma estrutura em viga bicelular com casca em sandwich, almas de longarina e mesas laminadas. No modelo computacional, elementos placa triangulares são usados para representar as almas das longarinas e a casca, e elementos barra para definir as mesas. Para esta estrutura, a sequência de empilhamento da casca deve ser procurada assim como o número de camadas a laminar em cada mesa para minimizar a massa sujeito a constrangimentos de falha e de deflexão (deslocamento da ponta da asa e torção). Para gerar a malha, a secção transversal da asa é dividida em cinco sub-secções: bordo de ataque, extradorso e intradorso entre as posições das longarinas e almas da longarina principal e da longarina traseira. Com base no número de divisões escolhidos e na técnica de espaçamento para cada sub-secção, são calculados os nós para o problema estrutural. Uma vez que o número de divisões e as técnicas de espaçamento da secção transversal são mantidos ao longo da envergadura, os nós do painel são resultado da interpolação dos nós das secções extremas de cada painel. Após a numeração dos nós, a malha é definida painel a painel, gerando os elementos triangulares para a casca e almas e os elementos lineares para as mesas. As cargas são calculadas usando a teoria da linha sustentadora e transferidas para a malha considerando que são aplicadas na alma e mesas da longarina principal. A ferramenta computacional usa o MYSTRAN para resolver o problema de elementos finitos e avaliar critérios de falha e o algoritmo genético do OpenMDAO para resolver o problema de otimização com inteiros. Tipicamente, os materiais considerados para o problema são ortotrópicos, incluindo tecidos unidirecionais e bidirecionais. Os constrangimentos de manufatura são abordados considerando estruturas em sandwich simétricas, em que o núcleo é a camada central, e através da orientação dos tecidos unidirecionais das mesas com a direção longitudinal do painel. O número máximo de camadas de cada estrutura laminada e as orientações em que um tecido pode ser aplicado devem ser especificadas pelo utilizador. Para reduzir o número de variáveis de desenho, uma base de dados que contém todas as combinações de material-orientação para cada camada é gerada. Este método permite fixar o número de variáveis de desenho por painel em sete: sequência de empilhamento da casca e das almas das longarinas, e número de camadas de cada uma das mesas de longarina. Devido ao elevado custo computacional do processo de otimização, a opção de realizar processamento em paralelo do OpenMDAO é ativa o que permite a análise simultânea de mais do que um indivíduo da população. Como caso de estudo, o painel central da asa da aeronave da edição de 2019 do Air Cargo Challenge da AERO@UBI é otimizado, testando a ferramenta de otimização. Uma redução de 16.5% da massa do painel é obtida durante as simulações realizadas. Das diferentes definições de otimização testadas, considera-se que a taxa de mutação de 0.05, tamanho de população de 30 indivíduos e 20 gerações corresponde à combinação que melhor serve este problema de otimização. Dos resultados obtidos, é recomendada a implementação adicional de um constrangimento capaz de medir a diferença entre a geometria deformada e a original no sentido de prevenir perdas aerodinâmicas excessivas.
A massa é um parâmetro essencial durante a fase the projeto de uma aeronave. Uma vez que a asa é um dos componentes mais pesados, uma previsão precisa da sua massa é essencial para a correta definição do seu tamanho e avaliação do desempenho da aeronave. Materiais compósitos compõem frequentemente as estruturas das aeronaves devido à sua elevada resistência específica e facilidade de manufatura. Encontrando a sequência de empilhamento ótima é possível minimizar a massa dos componentes assegurando que constrangimentos como integridade estrutural e deslocamento máximo são cumpridos. Vários estudos mostram que algoritmos evolucionários combinados com análises por elementos finitos são uma boa abordagem para otimizar estruturas em materiais compósitos no que respeita à composição e orientação de cada camada. Esta dissertação descreve o desenvolvimento de uma ferramenta que executa otimização de asas com estruturas em materiais compósitos de veículos aéreos não tripulados. A motivação para este trabalho assenta na necessidade de melhorar o método de dimensionamento estrutural usado pelas equipas da Universidade da Beira Interior durante a fase de projeto para a competição Air Cargo Challenge. Tipicamente, a asa é uma estrutura em viga bicelular com casca em sandwich, almas de longarina e mesas laminadas. No modelo computacional, elementos placa triangulares são usados para representar as almas das longarinas e a casca, e elementos barra para definir as mesas. Para esta estrutura, a sequência de empilhamento da casca deve ser procurada assim como o número de camadas a laminar em cada mesa para minimizar a massa sujeito a constrangimentos de falha e de deflexão (deslocamento da ponta da asa e torção). Para gerar a malha, a secção transversal da asa é dividida em cinco sub-secções: bordo de ataque, extradorso e intradorso entre as posições das longarinas e almas da longarina principal e da longarina traseira. Com base no número de divisões escolhidos e na técnica de espaçamento para cada sub-secção, são calculados os nós para o problema estrutural. Uma vez que o número de divisões e as técnicas de espaçamento da secção transversal são mantidos ao longo da envergadura, os nós do painel são resultado da interpolação dos nós das secções extremas de cada painel. Após a numeração dos nós, a malha é definida painel a painel, gerando os elementos triangulares para a casca e almas e os elementos lineares para as mesas. As cargas são calculadas usando a teoria da linha sustentadora e transferidas para a malha considerando que são aplicadas na alma e mesas da longarina principal. A ferramenta computacional usa o MYSTRAN para resolver o problema de elementos finitos e avaliar critérios de falha e o algoritmo genético do OpenMDAO para resolver o problema de otimização com inteiros. Tipicamente, os materiais considerados para o problema são ortotrópicos, incluindo tecidos unidirecionais e bidirecionais. Os constrangimentos de manufatura são abordados considerando estruturas em sandwich simétricas, em que o núcleo é a camada central, e através da orientação dos tecidos unidirecionais das mesas com a direção longitudinal do painel. O número máximo de camadas de cada estrutura laminada e as orientações em que um tecido pode ser aplicado devem ser especificadas pelo utilizador. Para reduzir o número de variáveis de desenho, uma base de dados que contém todas as combinações de material-orientação para cada camada é gerada. Este método permite fixar o número de variáveis de desenho por painel em sete: sequência de empilhamento da casca e das almas das longarinas, e número de camadas de cada uma das mesas de longarina. Devido ao elevado custo computacional do processo de otimização, a opção de realizar processamento em paralelo do OpenMDAO é ativa o que permite a análise simultânea de mais do que um indivíduo da população. Como caso de estudo, o painel central da asa da aeronave da edição de 2019 do Air Cargo Challenge da AERO@UBI é otimizado, testando a ferramenta de otimização. Uma redução de 16.5% da massa do painel é obtida durante as simulações realizadas. Das diferentes definições de otimização testadas, considera-se que a taxa de mutação de 0.05, tamanho de população de 30 indivíduos e 20 gerações corresponde à combinação que melhor serve este problema de otimização. Dos resultados obtidos, é recomendada a implementação adicional de um constrangimento capaz de medir a diferença entre a geometria deformada e a original no sentido de prevenir perdas aerodinâmicas excessivas.
Description
Keywords
Composites Finite Element Analysis Genetic Algorithm Integer Optimization Optimization Stacking Sequence
Table