Repository logo
 
Publication

Assessing Eco-Efficiency in Asian and African Countries Using Stochastic Frontier Analysis

dc.contributor.authorMoutinho, Victor
dc.contributor.authorMadaleno, Mara
dc.date.accessioned2021-10-28T11:00:20Z
dc.date.available2021-10-28T11:00:20Z
dc.date.issued2021-02
dc.description.abstractThis study aims to evaluate the economic and environmental efficiency of Asian and African economies. In the model proposed, Gross Domestic Product (GDP) is considered as the desired output and Greenhouse Gases (GHG), like carbon dioxide (CO2) emissions, as the undesirable output. Capital, labor, fossil fuels, and renewable energy consumption are regarded as inputs, and the GDP/CO2 ratio is the output, by using a log-linear Translog production function and using data from 2005 until 2018, including 22 Asian and 22 African countries. Results evidence cross-countries heterogeneity among production inputs, namely labor, capital, and type of energy use and its efficiency. The models complement each other and are based on different distributional assumptions and estimation methods while providing a picture of Eco-efficiency in Asian and African economies. Labor and renewable energy share increase technical Eco-efficiency, while fixed capital decreases it under time-variant models. Technical improvements in Eco-efficiency are verified through time considering the time variable into the model estimations, replacing fossil fuels with renewable sources. An inverted U-shaped Eco-efficiency function is found concerning the share of fossil fuel consumption. Important policy implications are drawn from the results regarding the empirical results.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMoutinho, V., & Madaleno, M. (2021b). Assessing eco-efficiency in Asian and African countries using Stochastic Frontier Analysis. Energies, 14(4), 1168. https://doi.org/10.3390/en14041168pt_PT
dc.identifier.doi10.3390/en14041168pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/11234
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationResearch Unit in Business Sciences
dc.relationResearch Unit on Governance, Competitiveness and Public Policy
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectEconomic growthpt_PT
dc.subjectResource efficiencypt_PT
dc.subjectEnvironmental efficiencypt_PT
dc.subjectAsian economiespt_PT
dc.subjectAfrican economiespt_PT
dc.subjectEfficiency scorespt_PT
dc.subjectEco-efficiencypt_PT
dc.titleAssessing Eco-Efficiency in Asian and African Countries Using Stochastic Frontier Analysispt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Unit in Business Sciences
oaire.awardTitleResearch Unit on Governance, Competitiveness and Public Policy
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04630%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04058%2F2020/PT
oaire.citation.titleEnergiespt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMoutinho
person.familyNameSilva Madaleno
person.givenNameVictor
person.givenNameMara Teresa da
person.identifierA-6356-2018
person.identifier.ciencia-id211A-65B8-8EA8
person.identifier.ciencia-idC614-127A-AE55
person.identifier.orcid0000-0003-0811-9033
person.identifier.orcid0000-0002-4905-2771
person.identifier.scopus-author-id57010555300
person.identifier.scopus-author-id36548856100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication5d1abfe3-e724-48b6-a64a-d03ec90d0f62
relation.isAuthorOfPublication58852036-2210-4721-9637-cb00342724b6
relation.isAuthorOfPublication.latestForDiscovery5d1abfe3-e724-48b6-a64a-d03ec90d0f62
relation.isProjectOfPublicationa9940477-25e6-4969-9d12-c913c900c23a
relation.isProjectOfPublication99322bb7-250c-4930-bd2c-c1a2d28870d1
relation.isProjectOfPublication.latestForDiscovery99322bb7-250c-4930-bd2c-c1a2d28870d1

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
44. Moutinho & Madaleno (2021).pdf
Size:
6.73 MB
Format:
Adobe Portable Document Format