Repository logo
 
Publication

Application of Lifelong Learning with CNNs to Visual Robotic Classification Tasks

dc.contributor.authorZacarias, Abel
dc.contributor.authorAlexandre, Luís
dc.date.accessioned2020-01-09T11:57:55Z
dc.date.available2020-01-09T11:57:55Z
dc.date.issued2018-10
dc.description.abstractThe field of robotics is becoming continuously more important, due to the impact it can bring to our everyday life. A long standing problem with neural network learning is the catastrophic forgetting when one tries to use the same network to learn more than one task. In this paper we present results of the application of a method to avoid catastrophic forgetting while using Convolutional Neural Networks (CNNs) to some visual recognition tasks relevant to the field of robotics. The results show that with this method a robot can learn new tasks without forgetting the previous learned tasks. Results also showed that if we applied this method, the performance on isolated tasks increases and it is better to use it than train a CNN in an isolated way (single task). We use for our experiments two well known data sets, namely, Olivetti Faces and Fashion-MNIST.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/8157
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.titleApplication of Lifelong Learning with CNNs to Visual Robotic Classification Taskspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.title24th Portuguese Conference on Pattern Recognition, RECPAD 2018pt_PT
person.familyNameZacarias
person.familyNameAlexandre
person.givenNameAbel
person.givenNameLuís
person.identifier.ciencia-id7612-6C59-2F02
person.identifier.ciencia-id2014-0F06-A3E3
person.identifier.orcid0000-0002-0226-9682
person.identifier.orcid0000-0002-5133-5025
person.identifier.ridE-8770-2013
person.identifier.scopus-author-id8847713100
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication9f46b558-e59e-4c92-95ac-7f3f06b0ed16
relation.isAuthorOfPublication131ec6eb-b61a-4f27-953f-12e948a43a96
relation.isAuthorOfPublication.latestForDiscovery131ec6eb-b61a-4f27-953f-12e948a43a96

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
recpad2018.pdf
Size:
200.68 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: