Repository logo
 
Publication

Pragma-Oriented Parallelization of the Direct Sparse Odometry SLAM Algorithm

dc.contributor.authorPereira, C.
dc.contributor.authorFalcao, Gabriel
dc.contributor.authorAlexandre, Luís
dc.date.accessioned2020-01-09T11:18:07Z
dc.date.available2020-01-09T11:18:07Z
dc.date.issued2019
dc.description.abstractMonocular 3D reconstruction is a challenging computer vision task that becomes even more stimulating when we aim at real-time performance. One way to obtain 3D reconstruction maps is through the use of Simultaneous Localization and Mapping (SLAM), a recurrent engineering problem, mainly in the area of robotics. It consists of building and updating a consistent map of the unknown environment and, simultaneously, saving the pose of the robot, or the camera, at every given time instant. A variety of algorithms has been proposed to address this problem, namely the Large Scale Direct Monocular SLAM (LSD-SLAM), ORB-SLAM, Direct Sparse Odometry (DSO) or Parallel Tracking and Mapping (PTAM), among others. However, despite the fact that these algorithms provide good results, they are computationally intensive. Hence, in this paper, we propose a modified version of DSO SLAM, which implements code parallelization techniques using OpenMP, an API for introducing parallelism in C, C++ and Fortran programs, that supports multi-platform shared memory multi-processing programming. With this approach we propose multiple directive-based code modifications, in order to make the SLAM algorithm execute considerably faster. The performance of the proposed solution was evaluated on standard datasets and provides speedups above 40% without significant extra parallel programming effort.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/EMPDP.2019.8671561pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/8154
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectParallel Computingpt_PT
dc.subjectOpen Multi-Processing (OpenMP)pt_PT
dc.subjectMultiprocessingpt_PT
dc.subjectSimultaneous Localization and Mapping (SLAM)pt_PT
dc.titlePragma-Oriented Parallelization of the Direct Sparse Odometry SLAM Algorithmpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.endPage259pt_PT
oaire.citation.startPage252pt_PT
person.familyNameFalcao
person.familyNameAlexandre
person.givenNameGabriel
person.givenNameLuís
person.identifier1483922
person.identifier.ciencia-id251F-BD6A-8DF9
person.identifier.ciencia-id2014-0F06-A3E3
person.identifier.orcid0000-0001-9805-6747
person.identifier.orcid0000-0002-5133-5025
person.identifier.ridP-9142-2014
person.identifier.ridE-8770-2013
person.identifier.scopus-author-id17433774200
person.identifier.scopus-author-id8847713100
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationf9be499e-6059-41dc-983e-5fe9022ea0db
relation.isAuthorOfPublication131ec6eb-b61a-4f27-953f-12e948a43a96
relation.isAuthorOfPublication.latestForDiscoveryf9be499e-6059-41dc-983e-5fe9022ea0db

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
pdp2019.pdf
Size:
262.49 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: