Repository logo
 
Publication

Real-time 2D–3D door detection and state classification on a low-power device

dc.contributor.authorRamôa, João Gaspar
dc.contributor.authorLopes, Vasco
dc.contributor.authorAlexandre, Luís
dc.contributor.authorMogo, Sandra
dc.date.accessioned2023-01-10T09:44:50Z
dc.date.available2023-01-10T09:44:50Z
dc.date.issued2021
dc.description.abstractIn this paper, we propose three methods for door state classifcation with the goal to improve robot navigation in indoor spaces. These methods were also developed to be used in other areas and applications since they are not limited to door detection as other related works are. Our methods work ofine, in low-powered computers as the Jetson Nano, in real-time with the ability to diferentiate between open, closed and semi-open doors. We use the 3D object classifcation, PointNet, real-time semantic segmentation algorithms such as, FastFCN, FC-HarDNet, SegNet and BiSeNet, the object detection algorithm, DetectNet and 2D object classifcation networks, AlexNet and GoogleNet. We built a 3D and RGB door dataset with images from several indoor environments using a 3D Realsense camera D435. This dataset is freely available online. All methods are analysed taking into account their accuracy and the speed of the algorithm in a low powered computer. We conclude that it is possible to have a door classifcation algorithm running in real-time on a low-power device.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/s42452-021-04588-3pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/12633
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationNOVA Laboratory for Computer Science and Informatics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDoor detectionpt_PT
dc.subjectDoor state classifcationpt_PT
dc.subjectDoor segmentationpt_PT
dc.subjectJetson nanopt_PT
dc.subject2D–3D Door datasetpt_PT
dc.subjectReal-Timept_PT
dc.titleReal-time 2D–3D door detection and state classification on a low-power devicept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleNOVA Laboratory for Computer Science and Informatics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04516%2F2020/PT
oaire.citation.issue5pt_PT
oaire.citation.titleSN Applied Sciencespt_PT
oaire.citation.volume3pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameRamôa
person.familyNameFERRINHO LOPES
person.familyNameAlexandre
person.familyNameMogo
person.givenNameGaspar
person.givenNameVASCO
person.givenNameLuís
person.givenNameSandra
person.identifier2445498
person.identifierbvYBcRkAAAAJ
person.identifier340036
person.identifier.ciencia-id2516-C038-0DC1
person.identifier.ciencia-id2014-0F06-A3E3
person.identifier.ciencia-id1717-63EA-3853
person.identifier.orcid0000-0002-8884-0922
person.identifier.orcid0000-0002-5577-1094
person.identifier.orcid0000-0002-5133-5025
person.identifier.orcid0000-0002-1423-2668
person.identifier.ridE-8770-2013
person.identifier.scopus-author-id8847713100
person.identifier.scopus-author-id6508333851
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication68af7f0f-e088-41c3-95a6-f997b883e1f9
relation.isAuthorOfPublicationa8a77d1f-0219-4739-a346-1b1ae649a47d
relation.isAuthorOfPublication131ec6eb-b61a-4f27-953f-12e948a43a96
relation.isAuthorOfPublication4c37dfc5-2e33-49f8-b105-5421875a536d
relation.isAuthorOfPublication.latestForDiscovery131ec6eb-b61a-4f27-953f-12e948a43a96
relation.isProjectOfPublicationccebc324-b0d7-400f-9c95-b6a8ac0149be
relation.isProjectOfPublication.latestForDiscoveryccebc324-b0d7-400f-9c95-b6a8ac0149be

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Real-Time-2D3D-Door-Detection-Ramoa.pdf
Size:
2.57 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: