Repository logo
 
Publication

The Influence of Image Normalization in Mammographic Classification with CNNs

dc.contributor.authorPerre, Ana Catarina
dc.contributor.authorAlexandre, Luís
dc.contributor.authorFreire, Luís
dc.date.accessioned2020-01-13T10:19:38Z
dc.date.available2020-01-13T10:19:38Z
dc.date.issued2017-10
dc.description.abstractIn order to improve the performance of Convolutional Neural Networks (CNN) in the classification of mammographic images, many researchers choose to apply a normalization method during the pre-processing stage. In this work, we aim to assess the impact of six different normalization methods in the classification performance of two CNNs. Results allow us to concluded that the effect of image normalization in the performance of the CNNs depends of which network is chosen to make the lesion classification; besides, the normalization method that seems to have the most positive impact is the one that subtracts the image mean and divide it by the corresponding standard deviation (best AUC mean with CNN-F = 0.786 and with Caffe = 0.790; best run AUC result was 0.793 with CNN-F and 0.791 with Caffe).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/8237
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectConvolutional Neural Networkspt_PT
dc.titleThe Influence of Image Normalization in Mammographic Classification with CNNspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F50008%2F2013/PT
oaire.citation.title23rd Portuguese Conference on Pattern Recognition, RECPAD 2017pt_PT
oaire.fundingStream5876
person.familyNamePerre
person.familyNameAlexandre
person.familyNameFreire
person.givenNameAna Catarina
person.givenNameLuís
person.givenNameLuís
person.identifier.ciencia-id2014-0F06-A3E3
person.identifier.orcid0000-0001-6668-2620
person.identifier.orcid0000-0002-5133-5025
person.identifier.orcid0000-0003-1633-1683
person.identifier.ridE-8770-2013
person.identifier.scopus-author-id8847713100
person.identifier.scopus-author-id6603957587
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication6c1bc4bf-7f4c-439b-8978-7d010ddcf3cc
relation.isAuthorOfPublication131ec6eb-b61a-4f27-953f-12e948a43a96
relation.isAuthorOfPublication6c6637ea-ddae-475d-b242-ab027bcf3543
relation.isAuthorOfPublication.latestForDiscovery131ec6eb-b61a-4f27-953f-12e948a43a96
relation.isProjectOfPublication6051e784-a228-452a-ad8e-90f4372bc6bf
relation.isProjectOfPublication.latestForDiscovery6051e784-a228-452a-ad8e-90f4372bc6bf

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
recpad2017b.pdf
Size:
278.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: