Repository logo
 
Publication

Intelligent PPG-based Heart Rate Signal Analysis for Car Drivers Monitoring

dc.contributor.authorBaiense, João Pedro
dc.contributor.authorEerdekens, Anniek
dc.contributor.authorSchampheleer, Jorn
dc.contributor.authorDeruyck, Margot
dc.contributor.authorPires, Ivan Miguel
dc.contributor.authorVelez, Fernando José
dc.date.accessioned2024-08-30T09:08:08Z
dc.date.available2024-08-30T09:08:08Z
dc.date.issued2024-09
dc.description.abstractThis research aims to contribute to enhancing road safety through the development and exploration of an intelligent wristbandbased health monitoring solution for car drivers. It focuses on using various sensors, such as the photoplethysmogram (PPG) and an accelerometer, to accurately estimate the drivers’ heart rate. The primary goal was to create a robust and accurate model capable of real-time heart rate estimation from PPG signals, with the potential to improve the effectiveness of Internet of Medical Things (IoMT) applications in the healthcare sector. The study delves into the multiple processing steps involved in improving the quality of data to make it suitable for efficient processing by the deep learning model, encompassing data analysis, signal interpretation, and applying diverse techniques such as filters, data shifting, and data manipulation. The research integrated the leave-one-session-out (LOSO) cross-validation technique for model training and evaluation alongside fine-tuning hyperparameters to optimize model performance and efficiency. The achieved Mean Absolute Error (MAE) of 3.450 ± 1.324 bpm and Mean Squared Error (MSE) of 69.50 ± 93.57 bpm2 represent notable outcomes, resulting in a 54.9% improvement in MAE from the original study. Additionally, the research integrated the model into a user-friendly mobile application, visually presenting the results and enabling users to examine their health status in real-time. These findings highlight the significance of eticulous data analysis and processing in wearable device applications and the high accuracy of the proposed model.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.citationJoão Pedro Baiense, Anniek Eerdekens, Jorn Schampheleer, Margot Deryuck, Ivan Miguel Pires, and Fernando J. Velez, “Intelligent PPG-based Heart Rate Signal Analysis for Car Drivers Monitoring,” in Prof. of INForum 2024 - 15º Simpósio Nacional de Informática, Lisboa, Portugal, Sep. 2024.pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/14469
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherINForumpt_PT
dc.relationInstituto de Telecomunicações
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/pt_PT
dc.subjectArtificial Intelligencept_PT
dc.subjectConvolutional Neural Networkspt_PT
dc.subjectData cleaningpt_PT
dc.subjectData processingpt_PT
dc.subjectDriver monitoringpt_PT
dc.subjectPhotoplethysmogrampt_PT
dc.subjectHeart rate signal processingpt_PT
dc.subjectWearable devicespt_PT
dc.titleIntelligent PPG-based Heart Rate Signal Analysis for Car Drivers Monitoringpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleInstituto de Telecomunicações
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT
oaire.citation.conferencePlaceLisboa, Portugalpt_PT
oaire.citation.titleAtas do INForum 2024 - 15º Simpósio Nacional de Informáticapt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameEerdekens
person.familyNameSchampheleer
person.familyNameDeruyck
person.familyNameSerrano Pires
person.familyNameVelez
person.givenNameAnniek
person.givenNameJorn
person.givenNameMargot
person.givenNameIvan Miguel
person.givenNameFernando J.
person.identifier-6iey0oAAAAJ
person.identifier.ciencia-idAC1E-0875-EB18
person.identifier.ciencia-id211D-8B3D-0131
person.identifier.ciencia-id1510-E247-C9DB
person.identifier.orcid0000-0001-9544-4904
person.identifier.orcid0009-0004-7194-6298
person.identifier.orcid0000-0002-0816-6465
person.identifier.orcid0000-0002-3394-6762
person.identifier.orcid0000-0001-9680-123X
person.identifier.scopus-author-id56715367700
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication57cfddee-1b02-498b-b178-00ac93a38690
relation.isAuthorOfPublication78baf3c6-c32c-4ccd-bcbd-452fceeaff38
relation.isAuthorOfPublicationb6a21b11-267c-4d6c-a9a6-aeb48468b72f
relation.isAuthorOfPublication2f7b6989-e608-4200-8dcc-e2a78233441a
relation.isAuthorOfPublicationb06443dd-f075-4744-9c44-4f7d1dc23487
relation.isAuthorOfPublicationeb831c87-4af4-4978-ba42-43d4d55dbe1f
relation.isAuthorOfPublication.latestForDiscovery78baf3c6-c32c-4ccd-bcbd-452fceeaff38
relation.isProjectOfPublication5a9bd4c8-57a9-46c4-95dc-a5e5c220c117
relation.isProjectOfPublication.latestForDiscovery5a9bd4c8-57a9-46c4-95dc-a5e5c220c117

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
172233029918509.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: