C-MAST - Center for Mechanical and Aerospace Science and Technologies
Permanent URI for this community
Historically, the research unit “CAST – Centre for Aerospace Science and Technologies” was created in 1994 by a small group of aerospace engineers. Now we became a Reasearch Center developing studies in Energy, Mechanical and Aerospace Engineering with a wide spectrum of areas, from Astrodynamics to Technological Forecasting.
Browse
Browsing C-MAST - Center for Mechanical and Aerospace Science and Technologies by Author "Abdollahzadeh, M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Implementation of the classical plasma–fluid model for simulation of dielectric barrier discharge (DBD) actuators in OpenFOAMPublication . Abdollahzadeh, M.; Páscoa, J.C.; Oliveira, P.J.To simulate the coupled plasma and fluid flow physics of dielectric-barrier discharge, a plasma–fluid model is utilized in conjunction with a compressible flow solver. The flow solver is responsible for determining the bulk flow kinetics of dominant neutral background species including mole fractions, gas temperature, pressure and velocity. The plasma solver determines the kinetics and energetics of the plasma species and accounts for finite rate chemistry. In order to achieve maximum reliability and best performance, we have utilized state-of-the-art numerical and theoretical approaches for the simulation of DBD plasma actuators. In this respect, to obtain a stable and accurate solution method, we tested and compared different existing numerical procedures, including operator-splitting algorithm, super-timestepping, and solution of the Poisson and transport equations in a semi-implicit manner. The implementation of the model is conducted in OpenFOAM. Four numerical test cases are considered in order to validate the solvers and to investigate the drawbacks/benefits of the solution approaches. The test problems include single DBD actuator driven by positive, negative and sinusoidal voltage waveforms, similar to the ones that could be found in literature. The accuracy of the results strongly depends to the choice of time step, grid size and discretization scheme. The results indicate that the super-time-stepping treatment improves the computational efficiency in comparison to explicit schemes. However, the semiimplicit treatment of the Poisson and transport equations showed better performance compared to the other tested approaches.
- Parametric optimization of surface dielectric barrier discharge actuators for ice sensing applicationPublication . Abdollahzadeh, M.; Rodrigues, Frederico; Pereira, J. Nunes; Páscoa, J. C.; Pires, LuísIn this paper a parametric optimization of the dielectric barrier discharge (DBD) plasma actuator is con ducted in order to achieve better ice sensing and deicing performance. For this purpose, different DBD plasma actuators were tested by changing the main geometrical dimension of the DBD plasma actuator and dielectric material. Both the ice sensing and thermal characteristics of the DBD plasma actuator were analyzed and compared. The results reveal that there exists two separate set of optimum parameters that lead to best ice sensing and thermal behavior. For both the sensing and thermal characteristics, the thinnest DBD showed the best performance. Kapton DBD plasma actuator showed the highest surface temperature while PMMA (poly methyl methacrylate) had the best performance for ice sensing. In the end, the deicing performance of a DBD actuator that had in average better thermal and ice sensing performance was tested for deicing an ice layer and a frost layer. The progress of the deicing process and the ice sensing measure on the surface were recorded and analyzed.