Browsing by Author "Ribeiro, A B Sarmento"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Beyond the limits of oxygen: effects of hypoxia in a hormone-independent prostate cancer cell linePublication . Mamede, Ana Catarina Manjolinha; Abrantes, Ana M; Pedrosa, L; Lopes, João Casalta; Pires, A S; Teixo, R J; Gonçalves, A C; Ribeiro, A B Sarmento; Maia, C J; Botelho, M FProstate cancer (PCa) has a high incidence worldwide. One of the major causes of PCa resistance is intratumoral hypoxia. In solid tumors, hypoxia is strongly associated with malignant progression and resistance to therapy, which is an indicator of poor prognosis. The antiproliferative effect and induced death caused by doxorubicin, epirubicin, cisplatin, and flutamide in a hormone-independent PCa cell line will be evaluated. The hypoxia effect on drug resistance to these drugs, as well as cell proliferation and migration, will be also analyzed. All drugs induced an antiproliferative effect and also cell death in the cell line under study. Hypoxia made the cells more resistant to all drugs. Moreover, our results reveal that long time cell exposure to hypoxia decreases cellular proliferation and migration. Hypoxia can influence cellular resistance, proliferation, and migration. This study shows that hypoxia may be a key factor in the regulation of PCa.
- Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinomaPublication . Mamede, Ana Catarina Manjolinha; Guerra, S; Laranjo, Marta; Carvalho, Maria J; Oliveira, R C; Gonçalves, A C; Alves, R; Castro, L Prado; Ribeiro, A B Sarmento; Moura, P; Abrantes, Ana M; Maia, C J; Botelho, M FHepatocellular carcinoma (HCC) has a worldwide high incidence and mortality. For this reason, it is essential to invest in new therapies for this type of cancer. Our team already proved that human amniotic membrane (hAM) is able to inhibit the metabolic activity of several human cancer cell lines, including HCC cell lines. Taking into account the previously performed work, this experimental study aimed to investigate the pathways by which hAM protein extracts (hAMPEs) act on HCC. Our results showed that hAMPE reduce the metabolic activity, protein content and DNA content in a dose- and time-dependent manner in all HCC cell lines. This therapy presents selective cytotoxicity, since it was not able to inhibit a non-tumorigenic human cell line. In addition, hAMPE induced cell morphology alterations in all HCC cell lines, but death type is cell line dependent, as proved by in vitro and in vivo studies. In conclusion, hAMPE have a promising role in HCC therapy, since it is capable of inducing HCC cytotoxicity and cell death.