Browsing by Issue Date, starting with "2014-02-25"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Optimization of liquid overlay technique to formulate heterogenic 3D co‐cultures modelsPublication . Costa, Elisabete C.; Gaspar, Vítor Manuel Abreu; Coutinho, Paula; Correia, Ilídio Joaquim SobreiraThree‐dimensional (3D) cell culture models of solid tumors are currently having a tremendous impact in the in vitro screening of candidate anti‐tumoral therapies. These 3D models provide more reliable results than those provided by standard 2D in vitro cell cultures. However, 3D manufacturing techniques need to be further optimized in order to increase the robustness of these models and provide data that can be properly correlated with the in vivo situation. Therefore, in the present study the parameters used for producing multicellular tumor spheroids (MCTS) by liquid overlay technique (LOT) were optimized in order to produce heterogeneous cellular agglomerates comprised of cancer cells and stromal cells, during long periods. Spheroids were produced under highly controlled conditions, namely: (i) agarose coatings; (ii) horizontal stirring, and (iii) a known initial cell number. The simultaneous optimization of these parameters promoted the assembly of 3D characteristic cellular organization similar to that found in the in vivo solid tumors. Such improvements in the LOT technique promoted the assembly of highly reproducible, individual 3D spheroids, with a low cost of production and that can be used for future in vitro drug screening assays.
- In Vivo High-Content Evaluation of Three-Dimensional Scaffolds BiocompatibilityPublication . Oliveira, Mariana; Ribeiro, MP.; Miguel, Sónia; Neto, Ana; Coutinho, Paula Isabel Teixeira Gonçalves; Correia, Ilídio Joaquim Sobreira; Mano, João F.While developing tissue engineering strategies, inflammatory response caused by biomaterials is an unavoidable aspect to be taken into consideration, as it may be an early limiting step of tissue regeneration approaches. We demonstrate the application of flat and flexible films exhibiting patterned high-contrast wettability regions as implantable platforms for the high-content in vivo study of inflammatory response caused by biomaterials. Screening biomaterials by using high-throughput platforms is a powerful method to detect hit spots with promising properties and to exclude uninteresting conditions for targeted applications. High-content analysis of biomaterials has been mostly restricted to in vitro tests where crucial information is lost, as in vivo environment is highly complex. Conventional biomaterials implantation requires the use of high numbers of animals, leading to ethical questions and costly experimentation. Inflammatory response of biomaterials has also been highly neglected in high-throughput studies. We designed an array of 36 combinations of biomaterials based on an initial library of four polysaccharides. Biomaterials were dispensed onto biomimetic superhydrophobic platforms with wettable regions and processed as freeze-dried three-dimensional scaffolds with a high control of the array configuration. These chips were afterward implanted subcutaneously in Wistar rats. Lymphocyte recruitment and activated macrophages were studied on-chip, by performing immunocytochemistry in the miniaturized biomaterials after 24 h and 7 days of implantation. Histological cuts of the surrounding tissue of the implants were also analyzed. Localized and independent inflammatory responses were detected. The integration of these data with control data proved that these chips are robust platforms for the rapid screening of early-stage in vivo biomaterials' response.