Browsing by Issue Date, starting with "2015-08-09"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- On the Modeling of a Spray Impingement Onto a Hot SurfacePublication . Silva, A. R. R.; Rodrigues, Christian; Barata, Jorge M MThe present investigation addresses the impingement of a spray onto a heated solid surface under crossflow conditions at low pressure injection - typical of port-injection engines - during cold start. The characteristics of the initial spray are established by employing an empirical procedure, which relies on a comprehensive set of free spray measurements. This computational study considers the presence of a crossflow moving perpendicularly to an interposed surface and the formation of a dynamic liquid film over the impingement wall. Both previous conditions are often neglected in numerical simulations, despite their importance on the final outcome. Distinct wall and crossflow temperatures are analyzed systematically to evaluate the influence of droplets evaporation on the final outcome of spray impingement, and, particularly, on the distribution of the thin liquid film over the surface. The present computational model already proved to deliver accurate predictions of the spray/wall interactions under different conditions. In this work, the conditions are extrapolated to a heated environment, which reproduce more adequately what is found in in-cylinder situations. The computational model is adapted to meet the new requirements and perform within the range of conditions for which it is now formulated. The analysis shows that higher temperatures lead to smaller impinging droplets, an increase in the number of depositing droplets but a decrease in the fraction of mass of particles contributing to the liquid film; and a more uniform distribution of the liquid layer over the surface.
- Advanced statistical analysis of the collision of wall jet with a boundary layerPublication . Silva, André; Panão, Miguel; Barata, Jorge M MLaser-Doppler measurements of the velocity characteristics of a ground vortex flow resulting from the collision of a wall jet with a boundary layer are analyzed using advanced statistical tools. Namely, finite mixtures of probability density functions, which determine the best fitting using a Bayesian approach based on a Markov Chain Monte Carlo (MCMC) algorithm. This approach takes into account eventual multimodality and heterogeneities in velocity field distributions. Therefore, it provides more complete information about the probability density function of multimodal velocity distributions and allows the identification of characteristic velocities in the heterogeneous data. The experiments are performed for a wall jet-to-boundary layer velocity ratio of 2, and include mean and turbulent velocity characteristics along the two normal directions contained in planes parallel to the nozzle axis. The results, which have relevance to flows encountered by VSTOL aircraft, quantify the structure of the complex ground vortex flow. The results revealed that in the collision zone the rms velocity fluctuation appears to be overestimated for the horizontal component, probably due to the measured velocity range, oscillating between positive and negative values. The results revealed that finite mixture was able to accurately reconstruct a mathematical function describing the probability distribution obtained experimentally. The results shows that U and u'rms rms provide an idea of the flow dynamics, their use is limited and an important amount of information associated with the highly curved flow complexity is lost, preventing a more accurate description of turbulent structures emerging from the collision of wall jet with a boundary layer.