Browsing by Issue Date, starting with "2022-10-17"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Cell‐Derived Vesicles for Nanoparticles' Coating: Biomimetic Approaches for Enhanced Blood Circulation and Cancer TherapyPublication . Rodrigues, Ana Carolina Félix; Fernandes, Natanael; Diogo, Duarte de Melo; Correia, I.J.; Moreira, André F.Cancer nanomedicines are designed to encapsulate different therapeuticagents, prevent their premature release, and deliver them specifically tocancer cells, due to their ability to preferentially accumulate in tumor tissue.However, after intravenous administration, nanoparticles immediatelyinteract with biological components that facilitate their recognition by theimmune system, being rapidly removed from circulation. Reports show thatless than 1% of the administered nanoparticles effectively reach the tumorsite. This suboptimal pharmacokinetic profile is pointed out as one of themain factors for the nanoparticles’ suboptimal therapeutic effectiveness andpoor translation to the clinic. Therefore, an extended blood circulation timemay be crucial to increase the nanoparticles’ chances of being accumulated inthe tumor and promote a site-specific delivery of therapeutic agents. For thatpurpose, the understanding of the forces that govern the nanoparticles’interaction with biological components and the impact of the physicochemicalproperties on the in vivo fate will allow the development of novel and moreeffective nanomedicines. Therefore, in this review, the nano–bio interactionsare summarized. Moreover, the application of cell-derived vesicles forextending the blood circulation time and tumor accumulation is reviewed,focusing on the advantages and shortcomings of each cell source.