Browsing by Issue Date, starting with "2024-01-02"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Hyaluronic acid-functionalized graphene-based nanohybrids for targeted breast cancer chemo-photothermal therapyPublication . Lima-Sousa, Rita; Melo, Bruna L.; Mendonça, António; Correia, I.J.; Melo-Diogo, Duarte deNanomaterials’ application in cancer therapy has been driven by their ability to encapsulate chemotherapeutic drugs as well as to reach the tumor site. Nevertheless, nanomedicines’ translation has been limited due to their lack of specificity towards cancer cells. Although the nanomaterials’ surface can be coated with targeting ligands, such has been mostly achieved through non-covalent functionalization strategies that are prone to premature detachment. Notwithstanding, cancer cells often establish resistance mechanisms that impair the effect of the loaded drugs. This bottleneck may be addressed by using near-infrared (NIR)-light responsive nanomaterials. The NIR-light triggered hyperthermic effect generated by these nanomaterials can cause irreversible damage to cancer cells or sensitize them to chemotherapeutics’ action. Herein, a novel covalently functionalized targeted NIR-absorbing nanomaterial for cancer chemo-photothermal therapy was developed. For such, dopamine-reduced graphene oxide nanomaterials were covalently bonded with hyaluronic acid, and then loaded with doxorubicin (DOX/HA-DOPA-rGO). The produced nanomaterials showed suitable physicochemical properties, high encapsulation efficiency, and photothermal capacity. The in vitro studies revealed that the nanomaterials are cytocompatible and that display an improved uptake by the CD44-overexpressing breast cancer cells. Importantly, the combination of DOX/HA-DOPA-rGO with NIR light reduced breast cancer cells’ viability to just 23 %, showcasing their potential chemo-photothermal therapy.
- The impact of revolutionary aircraft designs on global aviation emissionsPublication . Abrantes, Ivo; Ferreira, Ana F.; Magalhães, Leandro; Costa, Mário; Silva, AndréThe discussion about the environmental impact caused by aviation has gained greater prominence due to the increased demand for this sector and, consequently, the increase in the number of flights. Environmental concerns have stimulated the development of novel approaches to reduce pollutants and CO2 emissions. This study aims to assess the impact of disruptive concepts on commercial aircraft by reducing CO2 emissions by 50% by 2050. In this regard the fleet system dynamics model is used to assess the effects of technological progress on future air transport systems. It accounts for the manufacturer’s production capabilities and current projections and forecasts on the needs and evolution of global air transport, as well as their expected entry into service. The main factors reported were production capacity, year of entry of the technology/concept, and the transport capacity and range of aircraft. The sensitivity study on the production capacity of new aircraft/concepts showed that with a 15% increase, emissions can be reduced between 1 and 2.6%, depending on the case and scenario. On the other hand, increasing the aircraft production capacity could lead to a problem of overcapacity.