Repository logo
 
Loading...
Profile Picture
Person

Arinto, Patrícia

Search Results

Now showing 1 - 2 of 2
  • STEAP1 is overexpressed in prostate cancer and prostatic intraepithelial neoplasia lesions, and it is positively associated with Gleason score
    Publication . Gomes, Inês; Arinto, Patrícia; Lopes, Carlos; Santos, Cecilia; Baptista, Cláudio
    Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is a transmembrane protein of epithelial cells, mostly located at cell-cell junctions, and is overexpressed in several types of tumors, particularly prostate cancer. Several studies have pointed STEAP1 as a biomarker, but the clinical significance of its overexpression is not fully understood. Therefore, we aimed to establish the association of STEAP1 immunoreactivity with histologic diagnosis and clinical data of patients.
  • Promoter Demethylation Upregulates STEAP1 Gene Expression in Human Prostate Cancer: In Vitro and In Silico Analysis
    Publication . Rocha, Sandra; Sousa, Inês; Gomes, Inês M.; Arinto, Patrícia; Pinheiro, Pedro Costa; Coutinho, Eduarda; Santos, Cecilia; Jerónimo, Carmen; Lemos, Manuel C.; Passarinha, L A; Socorro, Sílvia; Baptista, Cláudio Maia
    The Six Transmembrane Epithelial Antigen of the Prostate (STEAP1) is an oncogene overexpressed in several human tumors, particularly in prostate cancer (PCa). However, the mechanisms involved in its overexpression remain unknown. It is well known that epigenetic modifications may result in abnormal gene expression patterns, contributing to tumor initiation and progression. Therefore, this study aimed to analyze the methylation pattern of the STEAP1 gene in PCa versus non-neoplastic cells. Bisulfite amplicon sequencing of the CpG island at the STEAP1 gene promoter showed a higher methylation level in non-neoplastic PNT1A prostate cells than in human PCa samples. Bioinformatic analysis of the GEO datasets also showed the STEAP1 gene promoter as being demethylated in human PCa, and a negative association with STEAP1 mRNA expression was observed. These results are supported by the treatment of non-neoplastic PNT1A cells with DNMT and HDAC inhibitors, which induced a significant increase in STEAP1 mRNA expression. In addition, the involvement of HDAC in the regulation of STEAP1 mRNA expression was corroborated by a negative association between STEAP1 mRNA expression and HDAC4,5,7 and 9 in human PCa. In conclusion, our work indicates that STEAP1 overexpression in PCa can be driven by the hypomethylation of STEAP1 gene promoter.