Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Swimming propulsion forces are enhanced by a small finger spreadPublication . Marinho, Daniel; Barbosa, Tiago M.; Reis, Victor M; Kjendlie, Per L; Alves, Francisco; Vilas Boas, J. Paulo; Machado, Leandro; Silva, António; Rouboa, Abel IThe main aim of this study was to investigate the effect of finger spread on the propulsive force production in swimming using computational fluid dynamics. Computer tomography scans of an Olympic swimmer hand were conducted. This procedure involved three models of the hand with differing finger spreads: fingers closed together (no spread), fingers with a small (0.32 cm) spread, and fingers with large (0.64 cm) spread. Steady-state computational fluid dynamics analyses were performed using the Fluent code. The measured forces on the hand models were decomposed into drag and lift coefficients. For hand models, angles of attack of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, and 90 degrees, with a sweep back angle of 0 degrees, were used for the calculations. The results showed that the model with a small spread between fingers presented higher values of drag coefficient than did the models with fingers closed and fingers with a large spread. One can note that the drag coefficient presented the highest values for an attack angle of 90 degrees in the three hand models. The lift coefficient resembled a sinusoidal curve across the attack angle. The values for the lift coefficient presented few differences among the three models, for a given attack angle. These results suggested that fingers slightly spread could allow the hand to create more propulsive force during swimming.
- Three-Dimensional CFD Analysis of the Hand and Forearm in SwimmingPublication . Marinho, Daniel; Silva, António; Reis, Victor M; Barbosa, Tiago M.; Vilas Boas, J. Paulo; Alves, Francisco; Machado, Leandro; Rouboa, Abel IThe purpose of this study was to analyze the hydrodynamic characteristics of a realistic model of an elite swimmer hand/forearm using three-dimensional computational fluid dynamics techniques. A three-dimensional domain was designed to simulate the fluid flow around a swimmer hand and forearm model in different orientations (0°, 45°, and 90° for the three axes Ox, Oy and Oz). The hand/forearm model was obtained through computerized tomography scans. Steady-state analyses were performed using the commercial code Fluent. The drag coefficient presented higher values than the lift coefficient for all model orientations. The drag coefficient of the hand/forearm model increased with the angle of attack, with the maximum value of the force coefficient corresponding to an angle of attack of 90°. The drag coefficient obtained the highest value at an orientation of the hand plane in which the model was directly perpendicular to the direction of the flow. An important contribution of the lift coefficient was observed at an angle of attack of 45°, which could have an important role in the overall propulsive force production of the hand and forearm in swimming phases, when the angle of attack is near 45°.