Loading...
1 results
Search Results
Now showing 1 - 1 of 1
- Imputação de Valores Omissos em Análise Descritiva de Dados, em RPublication . Salambiaku, Luzizila; Prata, Paula; Ferrão, Maria EugéniaOs valores omissos representam um problema frequente no processo de análise de dados. Neste artigo foram comparados seis métodos distintos de imputação, disponíveis no software R e avaliado o seu desempenho em conjuntos de dados relacionados com a área da educação. Foi estudada uma amostra de 20408 estudantes para testar os seis algoritmos em quatro conjuntos de dados gerados por simulação com diferentes percentagens de valores omissos, considerando 5%, 10%, 15% e 20% nas variáveis de interesse. Foram explorados métodos de imputação simples (Média, Mediana e Moda), métodos baseados em aprendizagem automática (kNN e bPCA) e um método de imputação múltipla (MICE). Foi avaliado o desempenho de cada método calculando os respetivos erros de imputação através as métricas RMSE e MAE. Os resultados obtidos mostram que a imputação pela Moda forneceu quase de forma constante menores valores de erro.