Loading...
10 results
Search Results
Now showing 1 - 10 of 10
- Structure of papers and NonwovensPublication . Pereira, Mário José Teixeira; Costa, A. P.; Salvado, Rita; Silvy, Jacques; Fiadeiro, PauloWe characterise the structure of fibrous materials: papers and nonwovens by diffraction and transmission of light. This allows the measurement of the fibres orientation distribution of the sample as a whole or for the surfaces using replicas. Applications of the methods are demonstrated in the case of paper for the control of the curl tendency and for two kinds of nonwoven materials, one used in the tailoring of surgical garments and the other used as components of the baby diapers.
- Wearable Sensors for Foetal Movement Monitoring in Low Risk PregnanciesPublication . Borges, Luís M.; Araújo, Pedro; Lebres, António S.; Rente, Andreia; Salvado, Rita; Velez, Fernando J.; Martinez-de-Oliveira, J.; Barroca, Norberto; Ferro, João MiguelIn low risk pregnancies, the continuous monitoring of the foetal health is based on traditional protocols for counting the foetal movements felt by the mother. Although the maternal perception is a relevant characteristic for the evaluation of the foetal health, this kind of monitoring is hard to accomplish and being subjective can induce into errors due to mother’s anxiety and lack of concentration. Furthermore, the majority of foetal fatalities occur during the last weeks of low risk pregnancies. Therefore, it is important to obtain a universal electronic obstetric tracing, allowing for the identification of sudden changes in the foetus health, by continuously monitoring the foetus movements. The Smart-Clothing project aim has been the development of easy-to-wear belts with a telemedicine system for this purpose. One of the tried solutions is the Flex sensor belt system, which guarantees real-time and continuous foetal monitoring while creating effective interfaces for querying sensor data and store all the medical record (which can later be accessed by health professionals). Another developed belt has piezoelectric sensors incorporated onto it. The piezoelectric sensor belt has shown a high capacity to detect foetal movements, isolating them from external interferences.
- 3-D Characterisation of Nonwoven Fabrics by means of an optical systemPublication . Pereira, Mário José Teixeira; Salvado, Rita; Fiadeiro, Paulo; Silvy, JacquesThe characterisation of fabric structure by means of quantified parameters is essential for the control of the fabrication processes and the resulting properties of the nonwoven materials. Important parameters of the structure are the porosity, the mean pore size and the pore size distribution, the specific area of the texture, the fibres orientation the last one needing to be characterised in the three dimension of the fabric web. In this research work we intend to evaluate the porous fibres orientation in geotextiles nonwovens using a procedure based on the fibres light conducting and their associated scattering. The interpretation of the phenomena is made through a modelisation concept of the pore fibre interfaces
- Smart Textiles for Strengthening of StructuresPublication . Górski, Marcin; Krzywoń, Rafał; Dawczyński, Szymon; Szojda, Leszek; Salvado, Rita; Lopes, Catarina; Araújo, Pedro; Velez, Fernando J.; Gomes, João CastroThis paper presents results of mechanical tests on a prototype of an innovative structural strengthening in form of self-monitoring fabric. Smart textile employs carbon fibers conductivity for measuring strains while monitoring changes of electric resistance under increasing load. A general solution was tested in a series of calibrating tests on strengthening of small size concrete slabs. Promising results of simple specimen, has encouraged the research team to perform the next tests using mastered carbon fibre reinforced fabric. Main tests were performed on natural scale RC beam. Smart textile proved its efficiency in both: strengthening and monitoring of strains during load increase. New strengthening proposal was given 10% increase of loading capacity and the readings of strain changes were similar to those obtained in classical methods. In order to calibrate the prototype and to define range limits of solution usability, textile sensor was tested in areas of large deformations (timber beam) and as well as very small strains (bridge bearing block). In both cases, the prototype demonstrated excellent performance in the range of importance for structural engineering. This paper also presents an example of use of the smart strengthening in situ, in a real life conditions.
- Spectrum opportunities for electromagnetic energy harvesting from 350 MHz to 3 GHzPublication . Tavares, Jorge Miguel da Silva; Barroca, Norberto; Saraiva, Henrique M.; Borges, Luís M.; Velez, Fernando J.; Loss, Caroline; Salvado, Rita; Pinho, Pedro; Gonçalves, Ricardo; Carvalho, Nuno BorgesThis paper presents spectrum opportunities for radio frequency (RF) energy harvesting identified through power density measurements from 350 MHz to 3 GHz. The field trials have been performed in two different cities (Covilha and Lisbon), by using the NARDA-SMR spectrum analyser with measuring antenna, and the Signal Hound spectrum analysers, respectively. The scope of our research considers RF energy harvesting devices, enabling to convert RF energy to direct current (DC), providing an alternative source to power supply wireless sensor network (WSN) devices. Printed antennas, able to operate at GSM (900/1800) bands, are proposed with gains of the order of 1.8-2.06 dBi and efficiency 77.6-84%. Guidelines for the choice of textile materials for a wearable antenna are also provided.
- Experimental Characterization of Wearable Antennas and Circuits for RF Energy Harvesting in WBANsPublication . Saraiva, Henrique Morais; Borges, Luís M.; Pinho, Pedro; Gonçalves, Ricardo; Chavez-Santiago, Raul; Barroca, Norberto; Tavares, Jorge; Gouveia, Paulo T.; Carvalho, Nuno Borges; Balasingham, Ilangko; Velez, Fernando J.; Loss, Caroline; Salvado, RitaField trials have been performed in Covilhã to identify the spectrum opportunities for radio frequency (RF) energy harvesting through power density measurements from 350 MHz to 3 GHz. Based on the identification of the most promising opportunities, a dual-band printed antenna was conceived, operating at GSM bands (900/1800), with gains of 1.8 and 2.06 dBi, and efficiency varying from 77.6 to 82%, for the highest and lowest operating frequency bands, respectively. In this paper, guidelines for the design of RF energy harvesting circuits and choice of textile materials for a wearable antenna are briefly discussed. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with and without impedance matching circuit) responsible for RF energy harvesting. All the three prototypes (1, 2 and 3) can power supply the sensor node for RF received powers of 2 dBm, -3 dBm and -4 dBm, and conversion efficiencies of 6, 18 and 20%, respectively.
- Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of StructuresPublication . Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Górski, Marcin; Velez, Fernando J.; Castro-Gomes, João; Krzywon, RafalThis paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the “wet process”, which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.
- Developing Sustainable Communication Interfaces Through Fashion DesignPublication . Loss, Caroline; Salvado, Rita; Lopes, Catarina; Pinho, Pedro; Gonçalves, Ricardo; Velez, Fernando J.; Saraiva, Henrique Morais; Tavares, Jorge; Barroca, Norberto; Borges, Luís M.The recent technological developments made electronic devices become imperative and indispensable, being present in our daily routines, all over the world. But, the continuous exposition of people to the electromagnetic radiation might cause illness. Electrosmog is the invisible electromagnetic radiation that results from the usage of electric equipment and wireless technologies. Some studies present electro sensibility as a contemporary illness affecting more and more people. This paper analyses some of the challenges this reality puts to the fashion design and how textile materials may be used to protect the human body against the harmful radiation and to develop smart cloths incorporating textile antennas able to capture these radiations and feed low-frequency devices. Thus, one considers the notion of “Transparent Sustainability” and the search for the smart energy explorations of/or in the human body. This way, the association of fashion design and technology can transform the garment in a sustainable communication interface.
- Design and evaluation of multi-band RF energy harvesting circuits and antennas for WSNsPublication . Borges, Luís M.; Barroca, Norberto; Saraiva, Henrique M.; Tavares, Jorge; Gouveia, Paulo T.; Velez, Fernando J.; Loss, Caroline; Salvado, Rita; Pinho, Pedro; Gonçalves, Ricardo; Carvalho, Nuno Borges; Chavez-Santiago, Raul; Balasingham, IlangkoRadio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively.
- Antennas and circuits for ambient RF energy harvesting in wireless body area networksPublication . Barroca, Norberto; Saraiva, Henrique M.; Gouveia, Paulo T.; Tavares, Jorge; Borges, Luís M.; Velez, Fernando J.; Loss, Caroline; Salvado, Rita; Pinho, Pedro; Gonçalves, Ricardo; Carvalho, Nuno Borges; Chavez-Santiago, Raul; Balasingham, IlangkoIn this paper, we identify the spectrum opportunities for radio frequency (RF) energy harvesting through power density measurements from 350 MHz to 3 GHz. The field trials have been performed in Covilhâ by using the NAKDA-SMR spectrum analyser with a measuring antenna. Based on the identification of the most promising opportunities, a dual-band band printed antenna operating at GSM bands (900/1800) is proposed, with gains of the order 1.8-2.06 dBi and efficiency 77.6-84%. Guidelines for the design of RF energy harvesting circuits and choice of textile materials for a wearable antenna are also discussed. Besides, we address the guidelines for designing circuits to harvest energy in a scenario where a wireless body area network (WBAN) is being sustained by a TX91501 Powercasf® RF dedicated transmitter and a five-stage Dickson voltage multiplier responsible for harvesting the RF energy. The IRIS motes, considered for our WBAN scenario, can perpetually operate if the RF received power attains at least -10 dBm.