Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Multi-GPU-Based Detection of Protein Cavities using Critical PointsPublication . Dias, Sérgio; Nguyen, Quoc; Jorge, Joaquim A; Gomes, AbelProtein cavities are specific regions on the protein surface where ligands (small molecules) may bind. Such cavities are putative binding sites of proteins for ligands. Usually, cavities correspond to voids, pockets, and depressions of molecular surfaces. The location of such cavities is important to better understand protein functions, as needed in, for example, structure-based drug design. This article introduces a geometric method to detecting cavities on the molecular surface based on the theory of critical points. The method, called CriticalFinder, differs from other surface-based methods found in the literature because it directly uses the curvature of the scalar field (or function) that represents the molecular surface, instead of evaluating the curvature of the Connolly function over the molecular surface. To evaluate the accuracy of CriticalFinder, we compare it to other seven geometric methods (i.e., LIGSITE-CS, GHECOM, ConCavity, POCASA, SURFNET, PASS, and Fpocket). The benchmark results show that CriticalFinder outperforms those methods in terms of accuracy. In addition, the performance analysis of the GPU implementation of CriticalFinder in terms of time consumption and memory space occupancy was carried out.
- Geometric Detection Algorithms for Cavities on Protein Surfaces in Molecular Graphics: A SurveyPublication . Simões, Tiago M. C.; Lopes, Daniel Simões; Dias, Sérgio Emanuel Duarte; Fernandes, Francisco; Jorge, Joaquim A; Pereira, João; Bajaj, Chandrajit; Gomes, AbelDetecting and analysing protein cavities provides significant information about active sites for biological processes (e.g. protein–protein or protein–ligand binding) in molecular graphics and modelling. Using the three‐dimensional (3D) structure of a given protein (i.e. atom types and their locations in 3D) as retrieved from a PDB (Protein Data Bank) file, it is now computationally viable to determine a description of these cavities. Such cavities correspond to pockets, clefts, invaginations, voids, tunnels, channels and grooves on the surface of a given protein. In this work, we survey the literature on protein cavity computation and classify algorithmic approaches into three categories: evolution‐based, energy‐based and geometry‐based. Our survey focuses on geometric algorithms, whose taxonomy is extended to include not only sphere‐, grid‐ and tessellation‐based methods, but also surface‐based, hybrid geometric, consensus and time‐varying methods. Finally, we detail those techniques that have been customized for GPU (graphics processing unit) computing.
- CavBench: a benchmark for protein cavity detection methodsPublication . Dias, Sérgio; Simões, Tiago M. C.; Fernandes, Francisco; Martins, Ana Mafalda; Ferreira, Alfredo; Jorge, Joaquim A; Gomes, AbelExtensive research has been applied to discover new techniques and methods to model protein-ligand interactions. In particular, considerable efforts focused on identifying candidate binding sites, which quite often are active sites that correspond to protein pockets or cavities. Thus, these cavities play an important role in molecular docking. However, there is no established benchmark to assess the accuracy of new cavity detection methods. In practice, each new technique is evaluated using a small set of proteins with known binding sites as ground-truth. However, studies supported by large datasets of known cavities and/or binding sites and statistical classification (i.e., false positives, false negatives, true positives, and true negatives) would yield much stronger and reliable assessments. To this end, we propose CavBench, a generic and extensible benchmark to compare different cavity detection methods relative to diverse ground truth datasets (e.g., PDBsum) using statistical classification methods.