Repository logo
 
Loading...
Profile Picture
Person

Isabel Barreto de Miranda Sargento, Susana

Search Results

Now showing 1 - 2 of 2
  • Supporting unified distributed management and autonomic decisions: design, implementation and deployment
    Publication . Ferreira, Carlos; Guardalben, Lucas; Gomes, Tomé; Sargento, Susana; Salvador, Paulo; Robalo, Daniel; Velez, Fernando
    Nowadays, the prevailing use of networks based on traditional centralized management systems reflects on a fast increase of the management costs. The growth in the number of network equipments and services reinforces the need to distribute the management responsibilities throughout the network devices. In this approach, each device executes common network management functionalities, being part of the overall network management platform. In this paper, we present a Unified Distributed Network Management (UDNM) framework that provides a unified (wired and wireless) management network solution, where further different network services can take part of this infrastructure, e.g., flow monitoring, accurate routing decisions, distributed policies dissemination, etc. This framework is divided in two main components: (A) Situation awareness, which sets up initial information through bootstrapping, discovery, fault-management process and exchange of management information; (B) Autonomic Decision System (ADS) that performs distributed decisions in the network with incomplete information. We deploy the UDNM framework in a testbed which involves two cities ( ≈ ≈ 250 km between), different standards (IEEE 802.3, IEEE 802.11 and IEEE 802.16e) and network technologies, such as, wired virtual grid, wireless ad-hoc gateways, ad-hoc mobile access devices. The UDNM framework integrates management functionalities into the managed devices, proving to be a lightweight and easy-respond framework. The performance analysis shows that the UDNM framework is feasible to unify devices management functionalities and to take accurate decisions on top of a real network.
  • Design of Communication and Control for Swarms of Aquatic Surface Drones
    Publication . Christensen, Anders Lyhne; Oliveira, Sancho; Postolache, Octavian; Oliveira, Maria João de; Sargento, Susana; Santana, Pedro; Nunes, Luis; Velez, Fernando J.; Sebastião, Pedro; Costa, Vasco; Duarte, Miguel; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando
    The availability of relatively capable and inexpensive hardware components has made it feasible to consider large-scale systems of autonomous aquatic drones for maritime tasks. In this paper, we present the CORATAM and HANCAD projects, which focus on the fundamental challenges related to communication and control in swarms of aquatic drones. We argue for: (i) the adoption of a heterogeneous approach to communication in which a small subset of the drones have long-range communication capabilities while the majority carry only short-range communication hardware, and (ii) the use of decentralized control to facilitate inherent robustness and scalability. A heterogeneous communication system and decentralized control allow for the average drone to be kept relatively simple and therefore inexpensive. To assess the proposed methodology, we are currently building 25 prototype drones from off-the-shelf components. We present the current hardware designs and discuss the results of simulation-based experiments involving swarms of up to 1,000 aquatic drones that successfully patrolled a 20 km-long strip for 24 hours.