Loading...
1 results
Search Results
Now showing 1 - 1 of 1
- Filtragem Não Linear Adaptativa e Seguimento Radar Ótimo de Veículos AeroespaciaisPublication . Coelho, Milca de Freitas; Bousson, KouamanaA filtragem não-linear é um dos tópicos mais importantes e complexos em engenharia, especialmente quando aplicada a situações de tempo-real em ambientes altamente não-lineares. Este é o cenário da maioria das aplicações aeroespaciais nomeadamente, aviso de colisão, seguimento radar, vigilância, orientação, navegação e controlo de veículos aeroespaciais, sendo que o principal objetivo é a estimação dos estados de um determinado alvo (seja este uma aeronave, satélite, míssil ou outro) a partir de medições ruidosas. A maior dificuldade está em desenvolver métodos que sejam capazes de lidar não só com a não-linearidade dos modelos, mas também com as incertezas associadas aos instrumentos de medições e às perturbações existentes no meio envolvente que afetam diretamente o sistema e, na sua maioria, são difíceis de prever e computar. Uma das estratégias mais utilizadas para garantir o ajuste dinâmico e ótimo dos métodos de filtragem face a todas estas adversidades é a implementação de algoritmos adaptativos. Assim sendo, a abordagem mais utilizada para lidar com esta problemática é a filtragem de Kalman. O seu sucesso, principalmente na área de engenharia, deve-se na sua maioria ao filtro de Kalman estendido (EKF – Extended Kalman Filter). Este assenta no pressuposto de que a linearização é suficiente para representar localmente a não-linearidade do sistema e, por conseguinte, o algoritmo utiliza o modelo linearizad0 em substituição ao modelo original não-linear. A linearização é um processo relativamente fácil de compreender e aplicar, o que justifica a popularidade do filtro. Contudo, ao lidar com sistemas altamente não-lineares, o EKF tende a apresentar algumas limitações, tais como, estimativas erráticas, comportamentos instáveis e por vezes até divergentes. De forma a colmatar algumas destas limitações, esta tese apresenta um filtro de Kalman estendido melhorado e adaptativo, denominado por improved Extended Kalman Filter (iEKF), onde para além da adaptabilidade clássica das matrizes de ruído, é proposto uso da norma de Frobenius como fator de correção da estimativa da covariância a priori e é também proposto um novo ponto de linearização. Desta forma, o iEKF adapta as matrizes de transição dos modelos através do novo ponto de linearização e adapta as informações estatísticas através da matriz de covariância proposta. A principal intenção é manter a simplicidade e estrutura pelo qual o EKF é conhecido, porém melhorar o seu desempenho e precisão com conceitos simples, eficazes e adaptativos. Um outro foco desta tese é analisar o desempenho da filtragem no seguimento radar. Assim sendo, tanto o EKF como o iEKF foram implementados e analisados em quatro aplicações deste âmbito, sendo estas: a estimação de uma órbita de um satélite artificial, a estimação de uma transferência orbital (transferência de Hohmann), a estimação de uma reentrada na atmosfera, e por fim, a estimação da trajetória de uma aeronave comercial, em que objetivo é estimar a posição e velocidade do veículo. Tanto o EKF como o iEKF foram analisados e comparados com base no RMSE (Root Mean Square Error). Os resultados demonstram que o iEKF fornece estimativas superiores. O algoritmo é, em geral, mais preciso, estável e confiável, demonstrando ser uma alternativa conveniente ao clássico EKF. Em suma, esta tese propõe um novo método de filtragem não-linear adaptativo, denominado por iEKF. Os resultados indicam que este deve ser tido em consideração para a estimação de estados não-linear tanto para o seguimento radar, como para qualquer outra área que necessidade de um algoritmo de filtragem eficiente.