Repository logo
 
Loading...
Profile Picture
Person

Pedro de Jesus Marto, João

Search Results

Now showing 1 - 3 of 3
  • Improved dynamics and gravitational collapse of tachyon field coupled with a barotropic fluid
    Publication . Marto, João; Tavakoli, Yaser; Moniz, Paulo
    We consider a spherically symmetric gravitational collapse of a tachyon field with an inverse square potential, which is coupled with a barotropic fluid. By employing an holonomy correction imported from loop quantum cosmology, we analyse the dynamics of the collapse within a semiclassical description. Using a dynamical system approach, we find that the stable fixed points given by the standard general relativistic setting turn into saddle points in the present context. This provides a new dynamics in contrast to the black hole and naked singularities solutions appearing in the classical model. Our results suggest that classical singularities can be avoided by quantum gravity effects and are replaced by a bounce. By a thorough numerical studies we show that, depending on the barotropic parameter $\gamma$, there exists a class of solutions corresponding to either a fluid or a tachyon dominated regimes. Furthermore, for the case $\gamma \sim 1$, we find an interesting tracking behaviour between the tachyon and the fluid leading to a dust-like collapse. In addition, we show that, there exists a threshold scale which determines when an outward energy flux emerges, as a non-singular black hole is forming, at the corresponding collapse final stages.
  • Semiclassical dynamics of horizons in spherically symmetric collapse
    Publication . Tavakoli, Yaser; Marto, João; Dapor, Andrea
    In this work, we consider a semiclassical description of the spherically symmetric gravitational collapse with a massless scalar field. In particular, we employ an effective scenario provided by holonomy corrections from loop quantum gravity, to the homogeneous interior spacetime. The singularity that would arise at the final stage of the corresponding classical collapse, is resolved in this context and is replaced by a bounce. Our main purpose is to investigate the evolution of trapped surfaces during this semiclassical collapse. Within this setting, we obtain a threshold radius for the collapsing shells in order to have horizons formation. In addition, we study the final state of the collapse by employing a suitable matching at the boundary shell from which quantum gravity effects are carried to the exterior geometry.
  • Gravitational collapse with tachyon field and barotropic fluid
    Publication . Tavakoli, Yaser; Marto, João; Ziaie, Amir Hadi; Moniz, Paulo
    A particular class of space-time, with a tachyon field, ϕ, and a barotropic fluid constituting the matter content, is considered herein as a model for gravitational collapse. For simplicity, the tachyon potential is assumed to be of inverse square form i.e., V(ϕ)∼ϕ^(−2). Our purpose, by making use of the specific kinematical features of the tachyon, which are rather different from a standard scalar field, is to establish the several types of asymptotic behavior that our matter content induces. Employing a dynamical system analysis, complemented by a thorough numerical study, we find classical solutions corresponding to a naked singularity or a black hole formation. In particular, there is a subset where the fluid and tachyon participate in an interesting tracking behaviour, depending sensitively on the initial conditions for the energy densities of the tachyon field and barotropic fluid. Two other classes of solutions are present, corresponding respectively, to either a tachyon or a barotropic fluid regime. Which of these emerges as dominant, will depend on the choice of the barotropic parameter, γ. Furthermore, these collapsing scenarios both have as final state the formation of a black hole.