Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Multifunctional Ceramics for Aeronautical and Aerospace ApplicationsPublication . Shvydyuk, Kateryna; Nunes-Pereira, João; Rodrigues, Frederico; Pascoa, Jose; Lanceros-Mendez, Senentxu; Pereira Silva, AIn the areas of aeronautics and aerospace, ceramic composites play an essential and increasing role due to their superior performance and tailorable properties, exhibiting highly specialized mechanical, thermal, and electric features1. Their main applications include thermal protection systems (TPS), thermal barrier coatings (TBC), and dielectric barrier discharge (DBD) plasma actuators, both for instrumentation and control purposes2. This work reports the manufacture and characterization of three ceramic composites capable of fulfilling the multifunctional ceramic condition according to the aforementioned applications. Accordingly, MgO-Al2O3 (MA), MgOCaZrO3 (MCZ), and Y2O3 stabilized ZrO2 (YSZ) are introduced for TPS, TBC, and DBD dielectric elements. To this aim, MA, MCZ, and YSZ ceramic composites were fabricated via a sequential process, encompassing the selection of raw powders and milling, die pressing, and sintering. Further, the samples were polished for surface optimization. Overall, the results obtained, including mechanical (Young’s and shear moduli, flexural strength, hardness, and fracture toughness), thermal (thermal conductivity and thermal expansion (CTE)), and electrical (dielectric constant) properties, report evidence that the developed ceramics show suitable multifunctional characteristics and therefore fulfil the aeronautical and aerospace demands for increased materials performances. The combined analysis of the Young’s and shear moduli (Fig.1a) with the CTE – the latter over a wide range of temperatures (Fig. 1b) – allows concluding that the cost-effective and widely used alumina appears suitable for bulk monolithic (TPS) and joint applications (TPS, TBC, and DBD).
- Plasma Actuators Based on Alumina Ceramics for Active Flow Control ApplicationsPublication . Rodrigues, Frederico; Shvydyuk, Kateryna; Nunes-Pereira, João; Pascoa, Jose; Silva, AbilioPlasma actuators have demonstrated great potential for active flow control applications, including boundary layer control, flow separation delay, turbulence control, and aircraft noise reduction. In particular, the material used as a dielectric barrier is crucial for the proper operation of the device. Currently, the variety of dielectrics reported in the literature is still quite restricted to polymers including Kapton, Teflon, poly(methyl methacrylate) (PMMA), Cirlex, polyisobutylene (PIB) rubber, or polystyrene. Nevertheless, several studies have highlighted the fragilities of polymeric dielectric layers when actuators operate at significantly high-voltage and -frequency levels or for long periods. In the current study, we propose the use of alumina-based ceramic composites as alternative materials for plasma actuator dielectric layers. The alumina composite samples were fabricated and characterized in terms of microstructure, electrical parameters, and plasma-induced flow velocity and compared with a conventional Kapton-based actuator. It was concluded that alumina-based dielectrics are suitable materials for plasma actuator applications, being able to generate plasma-induced flow velocities of approximately 4.5 m/s. In addition, it was verified that alumina-based ceramic actuators can provide similar fluid mechanical efficiencies to Kapton actuators. Furthermore, the ceramic dielectrics present additional characteristics, such as high-temperature resistance, which are not encompassed by conventional Kapton actuators, which makes them suitable for high-temperature applications such as turbine blade film cooling enhancement and plasma-assisted combustion. The high porosity of the ceramic results in lower plasma-induced flow velocity and lower fluid mechanical efficiency, but by minimizing the porosity, the fluid mechanical efficiency is increased.
- Review of Ceramic Composites in Aeronautics and Aerospace: A Multifunctional Approach for TPS, TBC and DBD ApplicationsPublication . Shvydyuk, Kateryna O.; Nunes-Pereira, João; Rodrigues, Frederico Miguel Freire; Silva, AbilioThe quest for increased performance in the aeronautical and aerospace industries has provided the driving force and motivation for the research, investigation, and development of advanced ceramics. Special emphasis is therefore attributed to the ability of fine ceramics to fulfill an attractive, extreme, and distinguishing combination of application requirements. This is impelled by ensuring a suitable arrangement of thermomechanical, thermoelectric, and electromechanical properties. As a result, the reliability, durability, and useful lifetime extension of a critical structure or system are expected. In this context, engineered ceramic appliances consist of three main purposes in aeronautical and aerospace fields: thermal protection systems (TPS), thermal protection barriers (TBC), and dielectric barrier discharge (DBD) plasma actuators. Consequently, this research provides an extensive discussion and review of the referred applications, i.e., TPS, TBC, and DBD, and discusses the concept of multifunctional advanced ceramics for future engineering needs and perspectives.