Repository logo
 
Loading...
Profile Picture
Person

Coutinho, Eduarda

Search Results

Now showing 1 - 2 of 2
  • Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria
    Publication . Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana
    Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.
  • Promoter Demethylation Upregulates STEAP1 Gene Expression in Human Prostate Cancer: In Vitro and In Silico Analysis
    Publication . Rocha, Sandra; Sousa, Inês; Gomes, Inês M.; Arinto, Patrícia; Pinheiro, Pedro Costa; Coutinho, Eduarda; Santos, Cecilia; Jerónimo, Carmen; Lemos, Manuel C.; Passarinha, L A; Socorro, Sílvia; Baptista, Cláudio Maia
    The Six Transmembrane Epithelial Antigen of the Prostate (STEAP1) is an oncogene overexpressed in several human tumors, particularly in prostate cancer (PCa). However, the mechanisms involved in its overexpression remain unknown. It is well known that epigenetic modifications may result in abnormal gene expression patterns, contributing to tumor initiation and progression. Therefore, this study aimed to analyze the methylation pattern of the STEAP1 gene in PCa versus non-neoplastic cells. Bisulfite amplicon sequencing of the CpG island at the STEAP1 gene promoter showed a higher methylation level in non-neoplastic PNT1A prostate cells than in human PCa samples. Bioinformatic analysis of the GEO datasets also showed the STEAP1 gene promoter as being demethylated in human PCa, and a negative association with STEAP1 mRNA expression was observed. These results are supported by the treatment of non-neoplastic PNT1A cells with DNMT and HDAC inhibitors, which induced a significant increase in STEAP1 mRNA expression. In addition, the involvement of HDAC in the regulation of STEAP1 mRNA expression was corroborated by a negative association between STEAP1 mRNA expression and HDAC4,5,7 and 9 in human PCa. In conclusion, our work indicates that STEAP1 overexpression in PCa can be driven by the hypomethylation of STEAP1 gene promoter.