Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positionsPublication . Costa, L.; Mantha, V R; Silva, António; Fernandes, Ricardo J.; Marinho, Daniel; Vilas Boas, J. Paulo; Machado, Leandro; Rouboa, AComputational fluid dynamics (CFD) plays an important role to quantify, understand and "observe" the water movements around the human body and its effects on drag (D). We aimed to investigate the flow effects around the swimmer and to compare the drag and drag coefficient (CD) values obtained from experiments (using cable velocimetry in a swimming pool) with those of CFD simulations for the two ventral gliding positions assumed during the breaststroke underwater cycle (with shoulders flexed and upper limbs extended above the head-GP1; with shoulders in neutral position and upper limbs extended along the trunk-GP2). Six well-trained breaststroke male swimmers (with reasonable homogeneity of body characteristics) participated in the experimental tests; afterwards a 3D swimmer model was created to fit within the limits of the sample body size profile. The standard k-ε turbulent model was used to simulate the fluid flow around the swimmer model. Velocity ranged from 1.30 to 1.70 m/s for GP1 and 1.10 to 1.50 m/s for GP2. Values found for GP1 and GP2 were lower for CFD than experimental ones. Nevertheless, both CFD and experimental drag/drag coefficient values displayed a tendency to jointly increase/decrease with velocity, except for GP2 CD where CFD and experimental values display opposite tendencies. Results suggest that CFD values obtained by single model approaches should be considered with caution due to small body shape and dimension differences to real swimmers. For better accuracy of CFD studies, realistic individual 3D models of swimmers are required, and specific kinematics respected.
- Does Warm-Up Have a Beneficial Effect on 100-m Freestyle?Publication . Neiva, Henrique; Marques, MC; Fernandes, Ricardo J.; Viana, João L.; Barbosa, Tiago M.; Marinho, DanielTo investigate the effect of warm-up on 100-m swimming performance. Twenty competitive swimmers (with a training frequency of 8.0 ± 1.0 sessions/wk) performed 2 maximal 100-m freestyle trials on separate days, with and without prior warm-up, in a counterbalanced and randomized design. The warm-up distance totaled 1000 m and replicated the swimmers' usual precompetition warm-up strategy. Performance (time), physiological (capillary blood lactate concentrations), psychophysiological (perceived exertion), and biomechanical variables (distance per stroke, stroke frequency, and stroke index) were assessed on both trials. Performance in the 100-m was fastest in the warm-up condition (67.15 ± 5.60 vs 68.10 ± 5.14 s; P = .01), although 3 swimmers swam faster without warm-up. Critical to this was the 1st 50-m lap (32.10 ± 2.59 vs 32.78 ± 2.33 s; P < .01), where the swimmers presented higher distance per stroke (2.06 ± 0.19 vs. 1.98 ± 0.16 m; P = .04) and swimming efficiency compared with the no-warm-up condition (stroke index 3.46 ± 0.53 vs 3.14 ± 0.44 m2 · c1 · s1; P < .01). Notwithstanding this better stroke-kinematic pattern, blood lactate concentrations and perceived exertion were similar between trials. These results suggest that swimmers' usual warm-up routines lead to faster 100-m freestyle swimming performance, a factor that appears to be related to better swimming efficiency in the 1st lap of the race. This study highlights the importance of performing swimming drills (for higher distance per stroke) before a maximal 100-m freestyle effort in similar groups of swimmers.
- Quantification of upper limb kinetic asymmetries in front crawl swimmingPublication . Morouço, Pedro; Marinho, Daniel; Fernandes, Ricardo J.; Marques, MCThis study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance.
- High Level Swimming Performance and its Relation to Non-Specific Parameters: A Cross-Sectional Study on Maximum Handgrip Isometric StrengthPublication . Garrido, Nuno; Silva, António; Fernandes, Ricardo J.; Barbosa, Tiago M.; Costa, Aldo M.; Marinho, Daniel; Marques, MCThe relationship between handgrip isometric strength and swimming performance was assessed in the four competitive swimming strokes in swimmers of different age groups and of both sexes. 78 national-level Portuguese swimmers (39 males, 39 females) were selected for this study. Grip strength, previously used as a marker of overall strength to predict future swimming performance, was measured using a hand dynamometer. The best competitive time at 100 and 200 m in all four swimming strokes were converted into 2010 FINA points. Non-parametric tests were used to evaluate differences between groups. Pearson product-moment correlations were computed to verify the association between variables. Handgrip maximum isometric strength was significantly correlated with swimming performance, particularly among female swimmers. Among female age group swimmers, the relationship between handgrip and 100-m freestyle was significant. Handgrip isometric strength seems to be related to swimming performance, especially to 100-m freestyle and in female swimmers. For all other distances and strokes, technique and training probably are more influential than semi-hereditary strength markers such as grip strength.