Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Sweet Cherries as Anti-Cancer Agents: From Bioactive Compounds to FunctionPublication . Fonseca, Lara R. S.; Silva, Gonçalo R.; Luís, Ângelo; Cardoso, Henrique J.; Correia, Sara; Vaz, CV; Duarte, Ana Paula; Socorro, SílviaSweet cherries (Prunus avium L.) are among the most appreciated fruits worldwide because of their organoleptic properties and nutritional value. The accurate phytochemical composition and nutritional value of sweet cherries depends on the climatic region, cultivar, and bioaccessibility and bioavailability of specific compounds. Nevertheless, sweet cherry extracts are highly enriched in several phenolic compounds with relevant bioactivity. Over the years, technological advances in chemical analysis and fields as varied as proteomics, genomics and bioinformatics, have allowed the detailed characterization of the sweet cherry bioactive phytonutrients and their biological function. In this context, the effect of sweet cherries on suppressing important events in the carcinogenic process, such as oxidative stress and inflammation, was widely documented. Interestingly, results from our research group and others have widened the action of sweet cherries to many hallmarks of cancer, namely metabolic reprogramming. The present review discusses the anticarcinogenic potential of sweet cherries by addressing their phytochemical composition, the bioaccessibility and bioavailability of specific bioactive compounds, and the existing knowledge concerning the effects against oxidative stress, chronic inflammation, deregulated cell proliferation and apoptosis, invasion and metastization, and metabolic alterations. Globally, this review highlights the prospective use of sweet cherries as a dietary supplement or in cancer treatment.
- The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on PhytoestrogensPublication . Figueira, Marília I; Carvalho, Tiago; Monteiro, Joana; Cardoso, Henrique J.; Correia, Sara; Vaz, CV; Duarte, Ana Paula; Socorro, SílviaThe role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
- Downregulated Regucalcin Expression Induces a Cancer-like Phenotype in Non-Neoplastic Prostate Cells and Augments the Aggressiveness of Prostate Cancer Cells: Interplay with the G Protein-Coupled Oestrogen Receptor?Publication . Fonseca, Lara R. S.; Carreira, Ricardo J. P.; Feijó, Mariana; Cavaco, J. E.; Cardoso, Henrique; Vaz, C. V.; Figueira, Marília I.; Socorro, SílviaBackground/objectives: Regucalcin (RGN) is a calcium-binding protein and an oestrogen target gene, which has been shown to play essential roles beyond calcium homeostasis. Decreased RGN expression was identified in several cancers, including prostate cancer (PCa). However, it is unknown if the loss of RGN is a cause or a consequence of malignancy. Also, it needs confirmation if RGN oestrogenic regulation occurs through the G-protein-coupled oestrogen receptor (GPER). This study investigates how RGN knockdown affects prostate cell fate and metabolism and highlights the GPER/RGN interplay in PCa. Methods: Bioinformatic analysis assessed the relationship between RGN expression levels and patients' outcomes. RGN knockdown (siRNA) was performed in non-neoplastic prostate and castration-resistant PCa. Wild-type and RGN knockdown PCa cells were treated with the GPER agonist G1. Viability (MTT), proliferation (Ki-67 immunocytochemistry), apoptosis (caspase-3-like activity) and migration (Transwell assays) were evaluated. Spectrophotometric analysis was used to determine glucose consumption, lactate production and lactate dehydrogenase activity. Lipid content was assessed using the Oil Red assay. Results/conclusions: Bioinformatic analysis showed that the loss of RGN correlates with the development of metastatic PCa and poor survival outcomes. RGN knockdown induced a cancer-like phenotype in PNT1A cells, indicated by increased cell viability and proliferation and reduced apoptosis. In DU145 PCa cells, RGN knockdown augmented migration and enhanced the glycolytic profile, which indicates increased aggressiveness, in line with patients' data. GPER activation modulated RGN expression in PCa cells and RGN knockdown in DU145 cells influenced GPER actions, which highlighted an interplay between these molecular players with relevance for their potential use as biomarkers or therapeutic targets.