Loading...
Research Project
Untitled
Funder
Authors
Publications
Purification of pre-miR-29 by arginine-affinity chromatography
Publication . Pereira, Patrícia; Sousa, Ângela; Queiroz, João; Correia, Ilídio; Figueiras, Ana; Sousa, Fani
Recently, differential expression of microRNAs, in patients with Alzheimer's disease (AD) suggests that they might have key regulatory roles in this neurodegenerative disease. Taking into account this fact, several studies demonstrated that the miR-29 is significantly decreased in AD patients, also displaying abnormally high levels of β-site APP-cleaving enzyme 1. Thus, RNA biochemical or structural studies often require a RNA sample that is chemically pure and biologically active. The present work describes a new affinity chromatography method using an arginine support to specifically purify pre-miR-29 from other Rhodovulum sulfidophilum small RNA species. Nevertheless, in order to achieve higher efficiency and selectivity, it is essential to characterize the behavior of pre-miR-29 binding/elution. Thus, three different strategies based on increased sodium chloride (280–500 mM), arginine (25 mM) or decreased ammonium sulfate (2–0.1 M) stepwise gradients are described to purify pre-miR-29. In this way, it was proved that well-defined binding/elution conditions are crucial to enhance the purification performance. As a matter of fact, by employing elution strategies using sodium chloride or arginine, an improvement in the final pre-miR-29 yields (96.5 and 56.7%, respectively) was obtained. Moreover, the quality control analysis revealed high integrity in pre-miR-29 preparations as well as high purity (90 and 98%, respectively), demonstrated by the scarce detection of proteins. This improved method takes advantage of its simplicity, significant cost reduction, due to the elimination of some complex operations, and speed for large-scale purification of pre-miRNAs suitable for biochemical and structural studies.
miRNA-29 bioseparation and target delivery strategies for Alzheimer's disease
Publication . Pereira, Patrícia Alexandra Nunes; Sousa, Fani Pereira de; Figueiras, Ana Rita; Correia, Ilídio Joaquim Sobreira
The possibility of selectively alter the expression pattern of a particular gene has been sought by scientists and clinicians for a long time. Nowadays, RNA interference (RNAi)-based technology has become a novel tool for silencing gene expression in cells. In addition, this strategy encloses an enormous therapeutic potential that could change the course of the currently applied treatments in several life threatening pathologies and it is expected that this technology can be translated onto clinical applications in a near future. MicroRNA (miRNA) has become a commonly employed tool for gene silencing, since it prevents protein synthesis by inducing the messenger RNA (mRNA) degradation, with a high specificity degree. Consequently, in the last years, the miRNAs have emerged as biopharmaceuticals to regulate several pathways involved in the insurgence and progression of the Alzheimer’s disease (AD), since they might have key regulatory roles in many neuronal functions, such as differentiation, synaptic plasticity and memory formation, and typically they are down-regulated in disease conditions. In the literature there are some studies describing a causal relationship between miR-29 expression and AD, since a loss of miR-29 cluster can contribute to increased beta-amyloid precursor protein-converting enzyme 1 (BACE1) and Amyloid-β (Aβ) levels in sporadic AD patients. Thus, this evidence supports the possibility to use miR-29 as a potential therapeutic target for AD therapy.
In general, miRNA-based therapy relies on the use of synthetic microRNAs. However, these synthesized formulations typically present contaminants that can lead to non-targeted gene silencing, which still restricts the pre-clinical or clinical application of these RNAs. Thus, considering this therapeutic purpose and the global distribution of novel biopharmaceuticals it is necessary to develop efficient processes for their preparation. The development of new strategies for microRNA production with high purity degree and biologically active is extremely required. One of the strategies might be the use of the recombinant production of biomolecules using prokaryotic hosts.
Hence, the present work intends to develop and establish an integrative biotechnological platform to biosynthesize and purify a recombinant miRNA precursor (pre-miR-29b) to act in the selective silencing of endogenous pathways directly related with AD, in particular BACE1 and Aβ. In addition, the success of these therapies also depends upon the ability to selectively and efficiently deliver the pre-miR-29b in the cytoplasmic compartment of neuronal cells, the location where their function is exerted; therefore the development of miRNA delivery systems was also envisioned.
The expression system Rhodovulum sulfidophilum (R. sulfidophilum) DSM 1374 allowed, for the first time, the production of human pre-miR-29b with a straightforward recuperation of pre-miR-29b in a single step, maintaining its biological active form. The application of this recombinant bacterial microorganism is innovative and is supported by the unusual capacity of secreting the nucleic acids to the extracellular space and the absence of host ribonucleases in the culture medium. Therefore, it is expected that the secreted miRNA will be devoid of main bacterial associated impurities. Regarding the growth conditions, and conversely to what was previously described for this bacterium, our results showed to be possible to develop an original approach for the aerobic growth of the R. sulfidophilum, which results in a cell growth improvement followed by an enhanced production of human pre-miR-29b. The extracellular pre-miR-29b concentration was approximately 182 μg/L, after 40 hours of bacterial growth and the total intracellular pre-miR-29b was of about 358 μg/L, at 32 hours of cell growth.
To further develop a potential therapeutic application, the major interest is not only to produce high quantities of RNA but also to obtain and preserve its biological active form, fulfilling the requirements of regulatory agencies. Hence, to assure that this prerequisite is met it was used a novel and effective purification strategy, based on affinity chromatography, to purify the pre-miR-29b. Therefore, in order to achieve the selectivity towards the target pre-miRNA and the maximum resolution between the pre-miR-29b and other host biomolecules (transfer RNAs and proteins) it was used an affinity support that exploits the same biological interactions that are established within the cell, by using immobilized amino acids (L-lysine and L-arginine), as specific ligands. The recognition of the pre-miR-29b achieved with these supports, allowed its selective recovery from a complex mixture with high efficiency and high purity. In parallel, the binding of pre-miRNA to these different amino acids was studied by Surface Plasmon Resonance. This information brings important insights concerning the characterization of the pre-miRNA binding onto chromatographic supports. Moreover, it was possible to determine some particular conditions enabling the improvement of the binding specificity of the amino acid ligands used to purify miRNA, preserving the RNA integrity. Taking into account that the structure of the chromatographic supports has been continuously developed to afford rapid and efficient separations, namely for the purification of nucleic acids, it was also tested a monolithic support to purify the pre-miR-29b. The association of the high capacity of these supports with the specificity conferred by the agmatine ligand (a derivative of L-arginine) represented a novelty and an advantage to obtain highly pure pre-miR-29b (90%) with a high recovery yield (95%).
The establishment of an effective application of miRNAs is usually constrained by different phenomena, namely their easy degradation when in contact with the body fluids. To overcome this limitation, delivery systems, such as polymeric systems (polyplexes), were developed and characterized in order to encapsulate and protect the pre-miR-29b biopharmaceuticals from degradation, allowing their sustained and targeted release. The formulations prepared with chitosan and polyethylenimine demonstrated high loading capacity, small sizes and exhibited a strong positive charge on their surface. In addition, considering the application field of this work, the delivery systems should also have the ability to penetrate the Blood-Brain Barrier (BBB), causing an increase of the pre-miRNAs concentration in the brain and, consequently the improvement of the therapeutic effect. Actually, BBB is an intrinsic barrier limiting miRNA therapeutic effect on the central nervous system. Thus, to improve the delivery of pre-miRNA therapeutics in the brain, the polyplexes were functionalized with specific ligands, namely lactoferrin and stearic acid which are recognized by cell surface receptors of BBB.
Finally, it was evaluated the biological activity of the recombinant pre-miR-29b by measuring the efficiency on human BACE1 knockdown, using in vitro neuronal cell lines. The effect of recombinant pre-miR-29b administration was verified by both assessing the mRNA and protein human BACE1 levels, by using RT-qPCR, Western blot and Imunocytochemistry. Results suggest that recombinant pre-miR-29b can represent a novel biopharmaceutical product for the therapeutic modulation of human BACE1 levels, because high levels of inhibition were achieved, namely 80% of reduction for BACE1 protein expression and 45% for Aβ42 levels. Globally, the implementation of these cutting-edge technologies can have a great impact on the biopharmaceutical industry, providing the basis for the implementation of novel miRNA-based therapeutics, not only for neurological disorders but also for future therapeutic targets that can be of potential interest.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
5876-PPCDTI
Funding Award Number
EXPL/BBB-BIO/1056/2012