Loading...
Research Project
Untitled
Funder
Authors
Publications
Design and evaluation of multi-band RF energy harvesting circuits and antennas for WSNs
Publication . Borges, Luís M.; Barroca, Norberto; Saraiva, Henrique M.; Tavares, Jorge; Gouveia, Paulo T.; Velez, Fernando J.; Loss, Caroline; Salvado, Rita; Pinho, Pedro; Gonçalves, Ricardo; Carvalho, Nuno Borges; Chavez-Santiago, Raul; Balasingham, Ilangko
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively.
Frame Capture and Reliability Based Decider Implementation in the MiXiM IEEE 802.15.4 Framework
Publication . Borges, Luís M.; Velez, Fernando J.; Barroca, Norberto; Lebres, António
The task of properly modelling the physical (PHY) layer constitutes the most challenging endeavor in wireless networks simulation. Unfortunately, today, the majority of the wireless sensor network (WSN) simulators consider a simple model for the PHY frame reception, which does not account for emerging research on the frame capture (FC) effect. In this paper, we present enhancements for the PHY layer model for the IEEE 802.15.4 standard employed in the MiXiM framework, to account for the FC effect within WSN-based simulations. These improvements are as follows: i) proposal of a formulation for the PHY layer packet reception based on a reliability concept, identified as the Enhanced Reliability Decision Algorithm, which guarantees the delivery of a packet received by the PHY layer to the medium access control (MAC) layer, with a certain value for the reliability (0.9 and 0.99); ii) different frame overlapping scenarios, and iii) different values for the thresholds to decide frame recovery. The work includes the description, implementation and performance evaluation of the proposed decision algorithm, jointly with the FC effect, in the MiXiM framework simulator, for basic MAC and scheduled channel polling (SCP) MAC protocols. Based on the simulation results, the proposed approach can significantly improve simulation accuracy and provide a PHY decision algorithm that guarantees, with a certain reliability, the delivery of frames to the MAC layer.
Antennas and circuits for ambient RF energy harvesting in wireless body area networks
Publication . Barroca, Norberto; Saraiva, Henrique M.; Gouveia, Paulo T.; Tavares, Jorge; Borges, Luís M.; Velez, Fernando J.; Loss, Caroline; Salvado, Rita; Pinho, Pedro; Gonçalves, Ricardo; Carvalho, Nuno Borges; Chavez-Santiago, Raul; Balasingham, Ilangko
In this paper, we identify the spectrum opportunities for radio frequency (RF) energy harvesting through power density measurements from 350 MHz to 3 GHz. The field trials have been performed in Covilhâ by using the NAKDA-SMR spectrum analyser with a measuring antenna. Based on the identification of the most promising opportunities, a dual-band band printed antenna operating at GSM bands (900/1800) is proposed, with gains of the order 1.8-2.06 dBi and efficiency 77.6-84%. Guidelines for the design of RF energy harvesting circuits and choice of textile materials for a wearable antenna are also discussed. Besides, we address the guidelines for designing circuits to harvest energy in a scenario where a wireless body area network (WBAN) is being sustained by a TX91501 Powercasf® RF dedicated transmitter and a five-stage Dickson voltage multiplier responsible for harvesting the RF energy. The IRIS motes, considered for our WBAN scenario, can perpetually operate if the RF received power attains at least -10 dBm.
A two-phase contention window control scheme for decentralized wireless networks
Publication . Borges, Luís M.; Velez, Fernando J.; Oliveira, Rodolfo
Most studies on performance of IEEE 802.11 distributed coordination function (DCF) have proved that the binary exponential backoff (BEB) algorithm suffers from low throughput, long transmission delays and low transmission reliability, for a high traffic load. In this paper, we propose a two-phase contention window (TPCW) access mechanism that enhances the aggregate throughput and transmission reliability while decreasing the medium access delay. In addition, this scheme aims at being computationally simple. This work characterizes the performance of the TPCW mechanism for different parameterization values. An analytical model is proposed for the TPCW access mechanism, which characterizes the frame transmission reliability, the total transmission delay and the aggregate throughput. The validity of our analytical model is verified through extensive simulations. By comparing the performance results, we conclude that the proposed scheme can significantly enhance IEEE 802.11 in terms of frame transmission reliability, total transmission delay and aggregate throughput.
Identification of the Opportunistic Radio Frequency Bands for Energy Harvesting in Wireless Body Area Networks
Publication . Barroca, Norberto; Borges, Luís M.; Tavares, Jorge; Velez, Fernando J.; Chávez-Santiago, Raul; Balasingham, I.
This paper presents the spectrum opportunities for radio frequency (RF) energy harvesting enabling to power supply future wireless body area networks (WBANs). The field trials have been performed in Covilhã by using the NARDA-SMR spectrum analyser with measuring antenna. Besides, this work addresses physical (PHY), medium access control (MAC) and network layer design aspects, by considering cognitive radio (CR)
opportunities by means of the identification of the most promising bands.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
POSI
Funding Award Number
SFRH/BD/38356/2007