Loading...
Research Project
New RAN TEchniques for 5G UltrA-dense Mobile networks
Funder
Authors
Publications
Impact of the propagation model on the capacity in small‐cell networks: comparison between the UHF/SHF and the millimetre wavebands
Publication . Teixeira, Emanuel; Sousa, Sofia; Velez, Fernando J.; Peha, Jon
This work shows how both frequency and the election of path loss model affect estimated spectral efficiency. Six different frequency bands are considered, ranging from 2.6 GHz in the Ultra High Frequency (UHF) band to 73 GHz in the millimetre wave bands (mmWaves), using both single-slope and two-slope path-loss models. We start by comparing four ur ban path loss models for UHF: the urban/vehicular and pedestrian test environment from the ITU-R M. 1255 Report, which includes the two-slope urban micro line-of-sight (LoS) and NLoS, from the ITU-R 2135 Report. Then, we consider mmWaves taking into con26 sideration the modified Friis propagation model, followed by an analysis of the through put for the 2.6, 3.5, 28, 38, 60 and 73 GHz frequency bands. We have found that the signal to-interference-plus-noise ratio, as estimated with the more realistic two-slope model, is lower for devices that are within the break-point of the transmitter, which is a small dis tance in the UHF/SHF band. As a result, spectral efficiency is higher with mmWaves than with UHF/SHF spectrum when cell radius is under 40 meters but not when cells are larger. Consequently, mmWaves spectrum will be more valuable as cells get small. We also find that capacity as estimated with the two-slope model is considerably smaller than one would obtain with the one-slope model when cells are small but there is little difference in the models when cells are larger. Thus, as cells get smaller, the use of one slope models may underestimate the number of cells that must be deployed.
Impact of using CSS PHY and RTS/CTS Combined with Frame Concatenation in the IEEE 802.15.4 Non-beacon Enabled Mode Performance
Publication . Barroca, Norberto; Borges, Luís M.; Chatzimisios, Periklis; Velez, Fernando J.
This paper studies the performance improvement of the IEEE 802.15.4 non-beacon-enabled mode originated by the inclusion of the Request-To-Send/Clear-To-Send (RTS/CTS) handshake mechanism resulting in frame concatenation. Under IEEE 802.15.4 employing RTS/CTS, the backoff procedure is not repeated for each data frame sent but only for each RTS/CTS set. The maximum throughput and minimum delay performance are mathematically derived for both the Chirp Spread Spectrum and Direct Sequence Spread Spectrum Physical layers for the 2.4 GHz band. Results show that the utilization of RTS/CTS significantly enhances the performance of IEEE 802.15.4 applied to healthcare in terms of bandwidth efficiency.
A Study on Cross-Carrier Scheduler for Carrier Aggregation in Beyond 5G Networks
Publication . Nidhi; Khan, Bahram; Mihovska, Albena; Prasad, Ramjee; Velez, Fernando J.
Carrier Aggregation (CA) allows the network and User Equipment (UE) to aggregate carrier frequencies in licensed, unlicensed, or Shared Access (SA) bands of the same or different spectrum bands to boost the achieved data rates. This work aims to provide a detailed study on CA techniques for 5G New Radio (5G NR) networks while elaborating on CA deployment scenarios, CA-enabled 5G networks, and radio resource management and scheduling techniques. We analyze cross-carrier scheduling schemes in CA-enabled 5G networks for Downlink (DL) resource allocation. The requirements, challenges, and opportunities in allocating Resource Blocks (RBs) and Component Carriers (CCs) are addressed. The study and analysis of various multi-band scheduling techniques are made while maintaining that high throughput and reduced power usage must be achieved at the UE. Finally, we present CA as the critical enabler to advanced systems while discussing how it meets the demands and holds the potential to support beyond 5G networks, followed by discussing open issues in resource allocation and scheduling techniques.
Massive Online Open Course (MOOC) on ‘Ultra-dense Networks for 5G and its Evolution’
Publication . Lopez-Morales, Manuel J.; Urquiza, David; Gonzalez-Morin, Diego; Nidhi, Nidhi; Khan, Bahram; Kooshki, Farinaz; Al-Sakkaf, Ahmed; Leyva, Leonardo; Farkhari, Hamed; Medda, Daniele; Seitanidis, Ilias-Nektarios; Abu-Sabah, Ayman; Viana, Joseanne; Cumino, Pedro; Gil-Jimenez, Victor P.; Garcia, Maria J. Fernandez-Getino; Morales-Cespedes, Máximo; García Armada, Ana; Velez, Fernando J.
Many of the new mobile communication devices will be things that power and monitor our homes, city infrastructure and transport. Controlling drones thousands of miles away, performing remote surgeries or being immersed in video with no latency will also be a huge game changer. Those are some ofthe few things that make the fifth generation (5G) a revolution expected to be a thrust to the economy. To that end, the design and density of deployment of new networks is also changing becoming more dense, what introduces new challenges into play. What else will it add to previous generations? The MOOC about Ultra-dense networks for 5G and its evolution has been prepared by the researchers of an European MSCA ITN, named TeamUp5G, and introduces the most important technologies that support 5G mobile communications, with an emphasis on increasing capacity and reducing power. The content spans from aspects of communication technologies to use cases, prototyping and the future ahead, not forgetting issues like interference man agement, energy efficiency or spectrum management. The aim of the MOOC is to fill the gap in graduation and post-graduation learning on content related to emerging 5G technologies and its applications, including the future 6G. The target audience involves engineers, researchers, practitioners and students. This paper describes the content and the learning outcomes of the MOOC, the main tasks and resources involved in its creation, the joint contributions from the academic and non-academic sector, and aspects like copyright compliance, quality assurance, testing and details on communication and enrollment, followed by the discussion of the lessons learned.
Inovação no Desenvolvimento do Curso Online Acessível a Todos (MOOC) sobre “Redes Ultra-densas 5G e sua Evolução”
Publication . Lopez-Morales, Manuel J.; Urquiza, David; Gonzalez-Morin, Diego; Nidhi, Nidhi; Khan, Bahram; Kooshki, Farinaz; Al-Sakkaf, Ahmed; Leyva, Leonardo; Farkhari, Hamed; Medda, Daniele; Seitanidis, Ilias-Nektarios; Abu-Sabah, Ayman; Viana, Joseanne; Cumino, Pedro; Gil-Jimenez, Victor P.; Garcia, Maria J. Fernandez-Getino; Morales-Cespedes, Máximo; García Armada, Ana; Velez, Fernando J.
Muitos dos novos dispositivos de comunicações móveis serão aparelhos que alimentam e monitorizam as nossas casas, infraestruturas urbanas e transportes. Controlar drones a milhares de quilómetros de distância, realizar cirurgias remotas ou estar imerso em vídeo com latência reduzida transformará certamente o acesso às tecnologias de informação e comunicação digitais. Estes são alguns dos aspetos que tornarão a quinta geração das comunicações móveis (5G) uma revolução, um impulso para a economia, e o foco de todos os intervenientes atuais na área das telecomunicações. Com este intuito, o planeamento e a crescente densidade de implantação destas novas redes introduzem novos desafios de otimização. Que elementos serão adicionados em relação às gerações anteriores? Baseados num Curso Online Acessível a Todos (MOOC) anteriormente desenvolvido na UC3M (UC3M Staff, 2022), o MOOC sobre redes ultra-densas 5G e sua evolução foi elaborado pelos investigadores da Marie Skłodowska-Curie Actions (MSCA) ITN/ETN Europeia (teamUp5G Reserachers, 2022), denominada TeamUp5G (Teamup5G, 2022; Pérez Leal et al., 2020) e apresenta as tecnologias mais importantes que suportam comunicações móveis 5G, com ênfase no aumento de capacidade e redução de energia, que facilitam o desenvolvimento de redes com pequenas células. Os conteúdos abrangem aspectos desde tecnologias de comunicação até casos de utilização, prototipagem e o futuro próximo, sem esquecer questões como a gestão de interferência, eficiência energética ou gestão de espectro. O objetivo do MOOC (TeamUp5G, 2022) é preencher a lacuna na aprendizagem ao nível dos estudos de graduação e pós-graduação, em conteúdos relacionados com tecnologias 5G emergentes e suas aplicações, incluindo a 6G futura. O público-alvo envolve engenheiros, investigadores, profissionais e estudantes. O artigo descreve o conteúdo e os resultados de aprendizagem do MOOC, as principais tarefas e recursos envolvidos na sua criação, as contribuições conjuntas do setor académico e não académico, e aspectos como a conformidade relativamente aos direitos de autor, garantia de qualidade, testes e detalhes sobre comunicação e inscrição, seguidos da discussão das lições extraídas.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
European Commission
Funding programme
H2020
Funding Award Number
813391