Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

8-(3-phenylpropyl)-1,3,7-triethylxanthine is a synthetic caffeine substitute with stronger metabolic modulator activity
Publication . Carrageta, David F; Dias, Tânia R.; Jarak, Ivana; Alves, Marco G; Oliveira, P.F.; Walt, Mietha Van Der; Terre'Blanche, Gisella; Monteiro, Mariana P.; Silva, Branca M.
Caffeine is one of the most worldwide consumed methylxanthines. It is well-known for its thermogenic and cell metabolism modulating effects. Based on methylxanthines' chemical structure, 8-(3-phenylpropyl)-1,3,7-triethylxanthine (PTX) is a novel adenosine antagonist with higher receptor affinity than caffeine. Therefore, we hypothesized that PTX metabolic effects could be stronger than those of caffeine. For that purpose, murine 3T3-L1 cells were cultured in the presence of increasing doses of PTX or caffeine (0.1, 1, 10 and 100 μM) for 24 h. Cytotoxicity was evaluated by reduction of tetrazolium salt (MTT) and lactate dehydrogenase (LDH) release. Cell metabolites released to the culture medium were identified and quantified by proton nuclear magnetic resonance (1H NMR). Cellular oxidative profile was also evaluated. Our results showed that PTX displayed no signs of cytotoxicity at all studied concentrations. When compared with caffeine, PTX increased glucose, pyruvate, and glutamine consumption, as well as lactate, alanine, and acetate production. Additionally, PTX decreased protein oxidation, thus protecting against oxidative stress-induced damage. These results illustrate that PTX is a stronger and less cytotoxic caffeine substitute with potential applications as metabolic modulator and a good candidate for novel drug design.
L-Theanine promotes cultured human Sertoli cells proliferation and modulates glucose metabolism
Publication . Dias, T. R.; Bernardino, Raquel; Alves, Marco G; Silva, Joaquina; Barros, Alberto; Sousa, Mário; Casal, Susana; Silva, Branca M.; Oliveira, P.F.
L-Theanine is the major free amino acid present in tea (Camellia sinensis L.). The effects of several tea constituents on male reproduction have been investigated, but L-theanine has been overlooked. Sertoli cells (SCs) are essential for the physical and nutritional support of germ cells. In this study, we aimed to investigate the ability of L-theanine to modulate important mechanisms of human SCs (hSCs) metabolism, mitochondrial function and oxidative profile, which are essential to prevent or counteract spermatogenesis disruption in several health conditions.
Implications of epigallocatechin-3-gallate in cultured human Sertoli cells glycolytic and oxidative profile
Publication . Dias, Tânia R.; Alves, Marco G; Silva, Joaquina; Barros, Alberto; Sousa, Mário; Casal, Susana; Silva, Branca M.; Oliveira, Pedro F.
Sertoli cells are crucial for the success of spermatogenesis, which is the biological process that ensures male fertility. These cells present high metabolic rates, being often subjected to high oxidative stress levels that, if uncontrolled, may compromise male fertility. Since the most abundant tea catechin, epigallocatechin-3-gallate (EGCG), has demonstrated a potent preventive activity against oxidative stress, we have evaluated its effect at concentrations of 5 and 50μM, on the metabolism, mitochondrial functionality and oxidative profile of human Sertoli cells (hSCs). While, the highest concentration of EGCG (50μM) increased glucose and pyruvate consumption, it decreased the conversion of pyruvate to alanine to sustain a regular lactate production. However, despite maintaining Krebs cycle functionality, EGCG (50μM) decreased mitochondrial membrane potential of hSCs, which could compromise the normal rates of ATP production. Interestingly, oxidative damages to proteins and lipids decreased in this experimental group, which may be valuable for the nutritional support of spermatogenesis.
Metabolic dynamics of human Sertoli cells are differentially modulated by physiological and pharmacological concentrations of GLP-1
Publication . Martins, Ana D.; Monteiro, Mariana P.; Silva, Branca M.; Barros, Alberto; Sousa, Mário; Carvalho, Rui A.; Oliveira, P.F.; Alves, Marco G.
Obesity incidence has pandemic proportions and is expected to increase even further. Glucagon-like peptide-1 (GLP-1) based therapies are well-established pharmacological resources for obesity treatment. GLP-1 regulates energy and glucose homeostasis, which are also crucial for spermatogenesis. Herein, we studied the GLP-1 effects in human Sertoli cells (hSCs) metabolism and mitochondrial function. hSCs were cultured in absence or exposed to increasing doses of GLP-1 mimicking physiological post-prandial (0.01 nM) levels or equivalent to pharmacological levels (1 and 100 nM) used for obesity treatment. We identified GLP-1 receptor in hSCs. Consumption/production of extracellular metabolites were assessed, as well as protein levels or activities of glycolysis-related enzymes and transporters. Mitochondrial membrane potential and oxidative damage were evaluated. Glucose consumption decreased, while lactate production increased in hSCs exposed to 0.01 and 1 nM GLP-1. Though lactate dehydrogenase (LDH) protein decreased after exposure to 100 nM GLP-1 its activity increased in hSCs exposed to the same concentration of GLP-1. Mitochondrial membrane potential decreased in hSCs exposed to 100 nM of GLP-1, while formation of carbonyl groups was decreased in those cells. Those effects were followed by an increase in p-mammalian target of rapamycin (mTOR) Ser(2448). Overall, the lowest concentrations of GLP-1 increased the efficiency of glucose conversion to lactate, while GLP-1 concentration of 100 nM induces mTOR phosphorylation, decreases mitochondrial membrane potential and oxidative damage. GLP-1 regulates testicular energy homeostasis and pharmacological use of GLP-1 analogues could be valuable to counteract the negative impact of obesity in male reproductive function.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

5876

Funding Award Number

PEst-OE/SAU/UI0215/2014

ID