Loading...
Research Project
GAME STATE MANAGEMENT OF MMOGS OVER GRID/CLOUD TECHNOLOGIES
Funder
Authors
Publications
Influence-based motion planning algorithms for games
Publication . Amador, Gonçalo Nuno Paiva; Gomes, Abel João Padrão
In games, motion planning has to do with the motion of non-player characters (NPCs)
from one place to another in the game world. In today’s video games there are two
major approaches for motion planning, namely, path-finding and influence fields.
Path-finding algorithms deal with the problem of finding a path in a weighted search
graph, whose nodes represent locations of a game world, and in which the connections
among nodes (edges) have an associated cost/weight. In video games, the most employed
pathfinders are A* and its variants, namely, Dijkstra’s algorithm and best-first
search. As further will be addressed in detail, the former pathfinders cannot simulate
or mimic the natural movement of humans, which is usually without discontinuities,
i.e., smooth, even when there are sudden changes in direction.
Additionally, there is another problem with the former pathfinders, namely, their lack
of adaptivity when changes to the environment occur. Therefore, such pathfinders
are not adaptive, i.e., they cannot handle with search graph modifications during path
search as a consequence of an event that happened in the game (e.g., when a bridge
connecting two graph nodes is destroyed by a missile).
On the other hand, influence fields are a motion planning technique that does not suffer
from the two problems above, i.e., they can provide smooth human-like movement and
are adaptive. As seen further ahead, we will resort to a differentiable real function to
represent the influence field associated with a game map as a summation of functions
equally differentiable, each associated to a repeller or an attractor. The differentiability
ensures that there are no abrupt changes in the influence field, consequently, the
movement of any NPC will be smooth, regardless if the NPC walks in the game world in
the growing sense of the function or not. Thus, it is enough to have a spline curve that
interpolates the path nodes to mimic the smooth human-like movement.
Moreover, given the nature of the differentiable real functions that represent an influence
field, the removal or addition of a repeller/attractor (as the result of the destruction
or the construction of a bridge) does not alter the differentiability of the global
function associated with the map of a game. That is to say that, an influence field is
adaptive, in that it adapts to changes in the virtual world during the gameplay.
In spite of being able to solve the two problems of pathfinders, an influence field may
still have local extrema, which, if reached, will prevent an NPC from fleeing from that
location. The local extremum problem never occurs in pathfinders because the goal
node is the sole global minimum of the cost function. Therefore, by conjugating the
cost function with the influence function, the NPC will never be detained at any local
extremum of the influence function, because the minimization of the cost function
ensures that it will always walk in the direction of the goal node. That is, the conjugation
between pathfinders and influence fields results in movement planning algorithms which, simultaneously, solve the problems of pathfinders and influence fields.
As will be demonstrated throughout this thesis, it is possible to combine influence fields
and A*, Dijkstra’s, and best-first search algorithms, so that we get hybrid algorithms
that are adaptive. Besides, these algorithms can generate smooth paths that resemble
the ones traveled by human beings, though path smoothness is not the main focus of
this thesis. Nevertheless, it is not always possible to perform this conjugation between
influence fields and pathfinders; an example of such a pathfinder is the fringe search
algorithm, as well as the new pathfinder which is proposed in this thesis, designated as
best neighbor first search.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Funding Award Number
SFRH/BD/86533/2012