Repository logo
 
Publication

IRINA: Iris Recognition (even) in Inacurately Segmented Data

dc.contributor.authorProença, H.
dc.contributor.authorNeves, João
dc.date.accessioned2020-02-10T14:35:50Z
dc.date.available2020-02-10T14:35:50Z
dc.date.issued2017
dc.description.abstractThe effectiveness of current iris recognition systems de-pends on the accurate segmentation and parameterisationof the iris boundaries, as failures at this point misalignthe coefficients of the biometric signatures. This paper de-scribesIRINA, an algorithm forIrisRecognition that is ro-bust againstINAccurately segmented samples, which makesit a good candidate to work in poor-quality data. The pro-cess is based in the concept of ”corresponding” patch be-tween pairs of images, that is used to estimate the posteriorprobabilities that patches regard the same biological region,even in case of segmentation errors and non-linear texturedeformations. Such information enables to infer a free-formdeformation field (2D registration vectors) between images,whose first and second-order statistics provide effective bio-metric discriminating power. Extensive experiments werecarried out in four datasets (CASIA-IrisV3-Lamp, CASIA-IrisV4-Lamp, CASIA-IrisV4-Thousand and WVU) and showthat IRINA not only achieves state-of-the-art performancein good quality data, but also handles effectively severe seg-mentation errors and large differences in pupillary dilation/ constriction.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/9174
dc.language.isoengpt_PT
dc.subjectIris recognitionpt_PT
dc.titleIRINA: Iris Recognition (even) in Inacurately Segmented Datapt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F50008%2F2013/PT
oaire.fundingStream5876
person.familyNameProença
person.givenNameHugo
person.identifier1153590
person.identifier.ciencia-idED16-81E7-0319
person.identifier.orcid0000-0003-2551-8570
person.identifier.ridF-9499-2010
person.identifier.scopus-author-id14016540600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication16ca2fc4-5379-43a6-8867-ba63bd9289e0
relation.isAuthorOfPublication.latestForDiscovery16ca2fc4-5379-43a6-8867-ba63bd9289e0
relation.isProjectOfPublication6051e784-a228-452a-ad8e-90f4372bc6bf
relation.isProjectOfPublication.latestForDiscovery6051e784-a228-452a-ad8e-90f4372bc6bf

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CVPR2017.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: