Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.92 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
The effectiveness of current iris recognition systems de-pends on the accurate segmentation and parameterisationof the iris boundaries, as failures at this point misalignthe coefficients of the biometric signatures. This paper de-scribesIRINA, an algorithm forIrisRecognition that is ro-bust againstINAccurately segmented samples, which makesit a good candidate to work in poor-quality data. The pro-cess is based in the concept of ”corresponding” patch be-tween pairs of images, that is used to estimate the posteriorprobabilities that patches regard the same biological region,even in case of segmentation errors and non-linear texturedeformations. Such information enables to infer a free-formdeformation field (2D registration vectors) between images,whose first and second-order statistics provide effective bio-metric discriminating power. Extensive experiments werecarried out in four datasets (CASIA-IrisV3-Lamp, CASIA-IrisV4-Lamp, CASIA-IrisV4-Thousand and WVU) and showthat IRINA not only achieves state-of-the-art performancein good quality data, but also handles effectively severe seg-mentation errors and large differences in pupillary dilation/ constriction.
Description
Keywords
Iris recognition