Repository logo
 
No Thumbnail Available
Publication

IRINA: Iris Recognition (even) in Inacurately Segmented Data

Use this identifier to reference this record.
Name:Description:Size:Format: 
CVPR2017.pdf1.92 MBAdobe PDF Download

Advisor(s)

Abstract(s)

The effectiveness of current iris recognition systems de-pends on the accurate segmentation and parameterisationof the iris boundaries, as failures at this point misalignthe coefficients of the biometric signatures. This paper de-scribesIRINA, an algorithm forIrisRecognition that is ro-bust againstINAccurately segmented samples, which makesit a good candidate to work in poor-quality data. The pro-cess is based in the concept of ”corresponding” patch be-tween pairs of images, that is used to estimate the posteriorprobabilities that patches regard the same biological region,even in case of segmentation errors and non-linear texturedeformations. Such information enables to infer a free-formdeformation field (2D registration vectors) between images,whose first and second-order statistics provide effective bio-metric discriminating power. Extensive experiments werecarried out in four datasets (CASIA-IrisV3-Lamp, CASIA-IrisV4-Lamp, CASIA-IrisV4-Thousand and WVU) and showthat IRINA not only achieves state-of-the-art performancein good quality data, but also handles effectively severe seg-mentation errors and large differences in pupillary dilation/ constriction.

Description

Keywords

Iris recognition

Pedagogical Context

Citation

Research Projects

Research ProjectShow more

Organizational Units

Journal Issue