Name: | Description: | Size: | Format: | |
---|---|---|---|---|
4.2 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O aparecimento dos Cubesats fez com que um novo panorama se instalasse no setor espacial.
O aumento da sua utilização nos últimos anos estÔ relacionado com os avanços tecnológicos a
nĆvel da miniaturização dos diversos sistemas associados a estes satĆ©lites. A miniaturização dos
sistemas propulsivos tem vindo a ser um dos grandes desafios a este nĆvel. Ainda assim, desde
a década de 50, têm surgido inúmeros novos tipos de sistemas propulsivos, dividindo-se, hoje
em dia, em 3 categorias: sistemas quĆmicos, sistemas elĆ©tricos e sistemas sem propelente.
Juntamente com estas outras categorias, os sistemas propulsivos elétricos têm-se desenvolvido
a um ritmo elevado, de tal modo que, atualmente, existem vƔrias tecnologias diferentes,
variando o propelente utilizado, a forma de produzir eletrƵes e ainda o processo utilizado para
criar tração. Os propulsores iónicos são uma das tecnologias mais desenvolvidas dentro da
propulsão elétrica. Na presente dissertação foi efetuado o design de um propulsor iónico, e
para tal foi necessÔrio realizar estudos relativamente às peças que constituem este sistema, ao
campo magnƩtico a ser implementado e aos materiais a utilizar em cada peƧa constituinte do
propulsor. Para o design das peças foi necessÔrio fazer uma revisão bibliogrÔfica do estado da
arte dos propulsores iónicos. Tendo isto em conta, foram adaptadas duas configurações
existentes e foi feito um sobredimensionamento Ć s mesmas. Todos os designs foram efetuados
atravƩs do software CATIA. Para o campo magnƩtico existente no motor foi escolhida uma
configuração magnética com base em estudos comparativos existentes e essa configuração sido
testada através do software FEMM. A validação destes resultados foi feita com base em
trabalhos existentes referentes a propulsores MiXI. AtravƩs das condiƧƵes de funcionamento e
os objetivos de cada peƧa foram definidos os materiais constituintes para cada uma delas.
Adicionalmente, foi realizado um estudo de mercado de forma a poder adquirir as peƧas
desenhadas para construção do propulsor. A disponibilidade dos materiais no mercado foi
tambƩm um fator a ter em conta na escolha do material para cada peƧa.
The rise of Cubesats has settled a new paradigm in the space sector. The growth in the amount of this type of satellites in orbit in recent years is due to technological advances in the miniaturization of the various systems associated with it. Miniaturization of propulsive systems has been one of the major challenges at this level. Nevertheless, since the 1950s, numerous new propulsive systems have emerged and are now divided into three main categories: chemical systems, electrical systems and propellantless systems. Along with these other categories, electric propulsive systems have developed at a high rate since then, so much so that today there are several different variations of this concept, with changes in the propellant used, the way electrons are produced, and the process used to create thrust. Regarding the propellant used, ionic propellants are one of the most developed technologies inside electrical propulsion. In the present dissertation, the design of an ion thruster was made, for this to be accomplished, a thorough study was necessary, namely of the parts that make this system, the magnetic field to be implemented and the materials to be used in each part of the thruster. For the part design, it was necessary to make a bibliographical review of the state of the art concerning ion thrusters. On the basis thereof, two existing configurations were adapted and oversized. All designs were made using CATIA software. For the magnetic field present in the motor, a magnetic configuration was chosen based on existing comparative studies, with this configuration being tested using the FEMM software. The validation of the results obtained was based on existing MiXI thrustersā studies. Based on the expected operating conditions and objectives of each part the constituent materials for each one of them were defined. In addition, a market study was carried out in order to assess where and for what price the thruster parts could be purchased. The availability of each material on the market was also a factor to consider when choosing the material for each part.
The rise of Cubesats has settled a new paradigm in the space sector. The growth in the amount of this type of satellites in orbit in recent years is due to technological advances in the miniaturization of the various systems associated with it. Miniaturization of propulsive systems has been one of the major challenges at this level. Nevertheless, since the 1950s, numerous new propulsive systems have emerged and are now divided into three main categories: chemical systems, electrical systems and propellantless systems. Along with these other categories, electric propulsive systems have developed at a high rate since then, so much so that today there are several different variations of this concept, with changes in the propellant used, the way electrons are produced, and the process used to create thrust. Regarding the propellant used, ionic propellants are one of the most developed technologies inside electrical propulsion. In the present dissertation, the design of an ion thruster was made, for this to be accomplished, a thorough study was necessary, namely of the parts that make this system, the magnetic field to be implemented and the materials to be used in each part of the thruster. For the part design, it was necessary to make a bibliographical review of the state of the art concerning ion thrusters. On the basis thereof, two existing configurations were adapted and oversized. All designs were made using CATIA software. For the magnetic field present in the motor, a magnetic configuration was chosen based on existing comparative studies, with this configuration being tested using the FEMM software. The validation of the results obtained was based on existing MiXI thrustersā studies. Based on the expected operating conditions and objectives of each part the constituent materials for each one of them were defined. In addition, a market study was carried out in order to assess where and for what price the thruster parts could be purchased. The availability of each material on the market was also a factor to consider when choosing the material for each part.
Description
Keywords
Cubesats Mixi Propulsores Iónicos Sistemas Elétricos Sobredimensionamento