| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 11.76 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A inspeção de linhas elétricas é uma atividade essencial para o bom funcionamento e fornecimento
de energia aos seus consumidores. Esta inspeção é efetuada por veículos aéreos tripulados,
sobretudo helicópteros mas tem como desvantagens estes serem veículos de custo elevado
na sua aquisição e operação. Os motores dos veículos não tripulados atuais do tipo quadrotor
são maioritariamente controlados por controladores rudimentares, essencialmente PID. Com um
controlador robusto designado para este tipo de veículos será possível obter um incremento na
performance da aquisição de dados durante a inspeção de linhas elétricas.
Esta dissertação tem foco num controlador robusto das atitudes de arfagem, rolamento e guinada
de um quadrotor com o objetivo de este ser utilizado no ramo da inspeção de linhas
elétricas de alta e média tensão. Foram considerados variados tipos de controladores para esta
dissertação, mas sendo esta apenas focada no controlo mais favorável para este tipo de veículo.
Para ilustração do problema de controlo foram usadas duas missões provenientes de voos físicos
de modo a simular o sistema de controlo e o comparar com o atualmente instalado.
Variadas simulações são apresentadas neste trabalho, como simulações baseadas num vetor de
referência de um voo físico e por referência estipulada de modo a garantir a estabilidade do
sistema de controlo durante a missão de inspeção das linhas. O controlador projetado neste
trabalho tem a particularidade de ter matrizes de definição do vetor de estado dependentes
desse vetor, e não constantes como é mais habitual, criando assim uma situação de modelação
de controlo constante ao longo do tempo de operação.
Foram efetuados estudos alternativos para tratamento de dados, filtragem de Kalman-Bucy,
suavização das curvas de referência dos voos físicos e iteração das diagonais das matrizes Q
e R com base no método de Bryson Modificado de modo a garantir o máximo desempenho de
controlo considerando todos as limitações estruturais e dinâmicas do veículo.
Electric lines inspection is an essential activity for their proper operation and energy supply to consumers. This inspection is made by helicopters but with disadvantages associated, namely being expensive vehicles in their acquisition and operation. The implementation of unmanned aerial vehicles to the electric lines inspections avoid the latest referred implications, due to the low cost of equipment acquisition and operation, being these vehicles able to be operated remotely or autonomously. Nowadays, the unmanned aerial vehicles quadrotor are essentially controlled by rudimentary controllers as PID. The implementation of a robust controller in this type of vehicle allows an increase of the data acquisition performance during the electric lines inspection. The proposed work is focused on the implementation of a robust controller in a quadrotor, with the objective to be used in the inspection of electric lines of high and medium voltage. Multiple types of controllers were considered for this work, but there were just mentioned the most favourable ones for this type of vehicle. To show the controller problem, there were used two physical missions to simulate the controller and to compare with the one installed on the quadrotor control equipment. Multiple simulations are presented in this work, such as simulations based on a physical flight reference vector and also a stipulated reference, to ensure the control system stability during the inspection missions. The controller designed in this work has the particularity that the state vector definition matrices are not constant during the flight time and depend on this same vector thus creating a situation of constant control modulation over time. Several additional studies were made for data processing such as Kalman-Bucy filtration, reference curve smoothing from the physical flights and matrices Q and R diagonals iteration based on Modified Bryson method to ensure the maximum performance of control considering all the structural and dynamics limitations of the vehicle.
Electric lines inspection is an essential activity for their proper operation and energy supply to consumers. This inspection is made by helicopters but with disadvantages associated, namely being expensive vehicles in their acquisition and operation. The implementation of unmanned aerial vehicles to the electric lines inspections avoid the latest referred implications, due to the low cost of equipment acquisition and operation, being these vehicles able to be operated remotely or autonomously. Nowadays, the unmanned aerial vehicles quadrotor are essentially controlled by rudimentary controllers as PID. The implementation of a robust controller in this type of vehicle allows an increase of the data acquisition performance during the electric lines inspection. The proposed work is focused on the implementation of a robust controller in a quadrotor, with the objective to be used in the inspection of electric lines of high and medium voltage. Multiple types of controllers were considered for this work, but there were just mentioned the most favourable ones for this type of vehicle. To show the controller problem, there were used two physical missions to simulate the controller and to compare with the one installed on the quadrotor control equipment. Multiple simulations are presented in this work, such as simulations based on a physical flight reference vector and also a stipulated reference, to ensure the control system stability during the inspection missions. The controller designed in this work has the particularity that the state vector definition matrices are not constant during the flight time and depend on this same vector thus creating a situation of constant control modulation over time. Several additional studies were made for data processing such as Kalman-Bucy filtration, reference curve smoothing from the physical flights and matrices Q and R diagonals iteration based on Modified Bryson method to ensure the maximum performance of control considering all the structural and dynamics limitations of the vehicle.
Description
Keywords
Atitude Controlo Filtragem Kalman-Bucy Lqr Quadrotor Robusto Uav
