Repository logo
 
Publication

Identification of activities of daily living through data fusion on motion and magnetic sensors embedded on mobile devices

dc.contributor.authorPires, Ivan
dc.contributor.authorGarcia, Nuno M.
dc.contributor.authorPombo, Nuno
dc.contributor.authorFlórez-Revuelta, Francisco
dc.contributor.authorSpinsante, Susanna
dc.contributor.authorTeixeira, Maria Cristina Canavarro
dc.date.accessioned2020-01-14T16:10:35Z
dc.date.available2020-01-14T16:10:35Z
dc.date.issued2018
dc.description.abstractSeveral types of sensors have been available in off‐the‐shelf mobile devices, including motion, magnetic, vision, acoustic, and location sensors. This paper focuses on the fusion of the data acquired from motion and magnetic sensors, i.e., accelerometer, gyroscope and magnetometer sensors, for the recognition of Activities of Daily Living (ADL). Based on pattern recognition techniques, the system developed in this study includes data acquisition, data processing, data fusion, and classification methods like Artificial Neural Networks (ANN). Multiple settings of the ANN were implemented and evaluated in which the best accuracy obtained, with Deep Neural Networks (DNN), was 89.51%. This novel approach applies L2 regularization and normalization techniques on the sensors’ data proved it suitability and reliability for the ADL recognition.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationI.M. Pires, N.M. Garcia, N. Pombo, F. Florez-Revuelta, S. Spinsante, M.C. Teixeira, Identification of activities of daily living through data fusion on motion and magnetic sensors embedded on mobile devices, Pervasive and Mobile Computing (2018), https://doi.org/10.1016/j.pmcj.2018.05.005pt_PT
dc.identifier.doi10.1016/j.pmcj.2018.05.005pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/8263
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectMobile devices sensorspt_PT
dc.subjectSensor data fusionpt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectIdentification of activities of daily livingpt_PT
dc.titleIdentification of activities of daily living through data fusion on motion and magnetic sensors embedded on mobile devicespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage93pt_PT
oaire.citation.startPage78pt_PT
oaire.citation.titlePervasive and Mobile Computingpt_PT
oaire.citation.volume47pt_PT
person.familyNameSerrano Pires
person.familyNameGarcia dos Santos
person.familyNamePombo
person.familyNameSpinsante
person.familyNameCanavarro
person.givenNameIvan Miguel
person.givenNameNuno Manuel
person.givenNameNuno
person.givenNameSusanna
person.givenNameCristina
person.identifier-6iey0oAAAAJ
person.identifier.ciencia-id211D-8B3D-0131
person.identifier.ciencia-idE719-0DEC-9751
person.identifier.ciencia-id0F16-A18D-96BA
person.identifier.ciencia-id0913-BC21-F66E
person.identifier.orcid0000-0002-3394-6762
person.identifier.orcid0000-0002-3195-3168
person.identifier.orcid0000-0001-7797-8849
person.identifier.orcid0000-0002-7323-4030
person.identifier.orcid0000-0002-8534-9484
person.identifier.ridP-5437-2014
person.identifier.scopus-author-id56715367700
person.identifier.scopus-author-id55389546100
person.identifier.scopus-author-id6506113067
person.identifier.scopus-author-id55832925000
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb06443dd-f075-4744-9c44-4f7d1dc23487
relation.isAuthorOfPublication3648e9b2-25ee-4d13-9af2-4addc30dae7c
relation.isAuthorOfPublication73519920-9c7f-4fcd-9207-1b8e9a8b1738
relation.isAuthorOfPublication6f6148b4-479b-4cf7-9466-ec1a5e35a269
relation.isAuthorOfPublication48014b08-a61c-48e5-a644-6097e8bd9adf
relation.isAuthorOfPublication.latestForDiscovery48014b08-a61c-48e5-a644-6097e8bd9adf

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2018 - Identification of activities of daily living through data fusion on motion and magnetic sensors embedded on mobile devices.pdf
Size:
631.31 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: