Name: | Description: | Size: | Format: | |
---|---|---|---|---|
5.28 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Nos últimos anos, os veículos elétricos (VE) têm vindo a ganhar destaque como
uma solução promissora para mitigar os desafios ambientais e energéticos globais. Para
tornar a adoção destes mais conveniente e prática, o carregamento sem fios tem
emergido como uma tecnologia inovadora e atraente.
Esta dissertação explora a evolução dos sistemas de carregamento sem fios,
enquadrando os tópicos relacionados, tais como: a história dos veículos elétricos; o tipo
de baterias utilizadas nos veículos elétricos; os métodos e modos de carregamento com
fios; os tipos de transferência de energia sem fio; as topologias de compensação usados
na tecnologia sem fios; o impacto do desalinhamento axial e aumento de distância entre
o par de bobinas na eficiência da transferência de energia. É feita ainda uma
apresentação dos principais sistemas presentes na indústria.
O presente trabalho foca-se maioritariamente no impacto que a geometria da
bobina tem no fator de acoplamento do sistema e, por sua vez, no rendimento do mesmo.
Propõe-se e analisa-se um núcleo ferromagnético inovador que comprova o aumento
significativo do fator de acoplamento do sistema e demonstra resultados promissores
equiparados com a literatura. Este estudo explora ainda o impacto das topologias de
compensação ressonantes no desempenho global do sistema de carregamento sem fios,
observando um aumento significativo na energia entregue à carga e o consequente
aumento de rendimento.
O estudo analítico envolve a obtenção das soluções das expressões matemáticas
que são aplicadas na caracterização eletromagnética de cada par de bobinas e o estudo
numérico, que utiliza o método de elementos finitos, o qual foi realizado por intermédio
de um software comercial.
Todo o processo de cálculo computacional é implementado em linguagem própria
do software Matlab e a análise do comportamento dinâmico do sistema é feito através
do Simulink.
In recent years, electric vehicles (EVs) have been gaining prominence as a promising solution to mitigate global environmental and energy challenges. To make the adoption of EVs more convenient and practical, wireless charging has emerged as an innovative and attractive technology. This dissertation explores the evolution of wireless charging systems, framing the surrounding topics such as: the history of electric vehicles; the type of batteries used in electric vehicles; wired charging methods and modes; types of wireless energy transfer; compensation topologies used in wireless energy transfer; the impact of axial misalignment and increased distance between the pair of coils on energy transfer efficiency. There is also a presentation of the main systems present in the industry. This work focuses mainly on the impact that coil geometry has on the system's coupling factor and, in turn, its performance. An innovative ferromagnetic core is proposed and analysed, which proves a significant increase in the system's coupling factor and shows promising results on a par with the literature. This study also explores the impact of resonant compensation topologies on the overall performance of the wireless charging system, observing a significant increase in the energy delivered to the load and the consequent increase in performance. The analytical analysis involves solving analytical expressions for the electromagnetic characterization of each pair of coils, and the numerical design, which uses the finite element method, was carried out using commercial software. The entire computational calculation process is implemented in Matlab's own language and the system's dynamic behaviour is analysed using Simulink.
In recent years, electric vehicles (EVs) have been gaining prominence as a promising solution to mitigate global environmental and energy challenges. To make the adoption of EVs more convenient and practical, wireless charging has emerged as an innovative and attractive technology. This dissertation explores the evolution of wireless charging systems, framing the surrounding topics such as: the history of electric vehicles; the type of batteries used in electric vehicles; wired charging methods and modes; types of wireless energy transfer; compensation topologies used in wireless energy transfer; the impact of axial misalignment and increased distance between the pair of coils on energy transfer efficiency. There is also a presentation of the main systems present in the industry. This work focuses mainly on the impact that coil geometry has on the system's coupling factor and, in turn, its performance. An innovative ferromagnetic core is proposed and analysed, which proves a significant increase in the system's coupling factor and shows promising results on a par with the literature. This study also explores the impact of resonant compensation topologies on the overall performance of the wireless charging system, observing a significant increase in the energy delivered to the load and the consequent increase in performance. The analytical analysis involves solving analytical expressions for the electromagnetic characterization of each pair of coils, and the numerical design, which uses the finite element method, was carried out using commercial software. The entire computational calculation process is implemented in Matlab's own language and the system's dynamic behaviour is analysed using Simulink.
Description
Keywords
Acoplamento Indutivo Ressonante Enrolamento Fator de Acoplamento Núcleo Ferromagnético Rendimento Sistema de Transferência de Energia Sem Fio Veículo Elétrico