Repository logo
 
No Thumbnail Available
Publication

Emulsion Electrospun Fiber Mats of PCL/PVA/Chitosan and Eugenol for Wound Dressing Applications

Use this identifier to reference this record.
Name:Description:Size:Format: 
9859506.pdf2 MBAdobe PDF Download

Advisor(s)

Abstract(s)

In recent years, the damaging e ects of antimicrobial resistance relating to wound management and infections have driven the ongoing development of composite wound dressing mats containing natural compounds, such as plant extracts and their derivatives. e present research reports the fabrication of novel electrospun Polycaprolactone (PCL)/Polyvinyl Alcohol (PVA)/Chitosan (CS) ber mats loaded with Eugenol (EUG), an essential oil, known for its therapeutic properties. e electrospun ber mats were prepared via electrospinning from either water-in-oil (W/O) or oil-in-water (O/W) emulsions and characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), total porosity measurements, and water contact angle. e in vitro EUG release pro le and antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa were also evaluated. e obtained results proved that the EUG was loaded e ciently into electrospun PCL/PVA/CS ber mats and the two W/O and O/W emulsions prepared from the PCL/PVA/CS (7 : 3 : 1) and PCL/PVA/CS (3 : 7 : 1) revealed porosity within the ideal range of 60–90%, even when EUG was loaded. e measured contact angle values showed that the O/W emulsion exhibited a more hydrophilic character and the wettability noticeably decreased a¢er adding EUG in both emulsion blends. Furthermore, the electrospun PCL/PVA/CS ber mats demonstrated a rapid release of EUG during the rst 8 hours, which enhanced gradually a¢erward (up to 120 hours). Moreover, an e cient antibacterial activity against S. aureus (inhibition ratios of 92.43% and 83.08%) and P. aeruginosa (inhibition ratios of 94.68% and 87.85%) was displayed and the in vitro cytotoxic assay demonstrated that the normal human dermal broblasts (NHDF) remained viable for at least 7 days, a¢er direct contact with the produced electrospun ber mats. erefore, such ndings support the biocompatibility and suitability of using these EUG-loaded electrospun PCL/PVA/CS ber mats as a new innovative wound dressing material with potential for preventing and treating microbial wound infections.

Description

Keywords

Citation

Research Projects

Organizational Units

Journal Issue