Name: | Description: | Size: | Format: | |
---|---|---|---|---|
18.71 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Cellular planning and optimization of mobile heterogeneous networks has been a topic of study
for several decades with a diversity of resources, such as analytical formulations and simulation
software being employed to characterize different scenarios with the aim of improving system
capacity. Furthermore, the world has now witnessed the birth of the first commercial 5G New
Radio networks with a technology that was developed to ensure the delivery of much higher data
rates with comparably lower levels of latency. In the challenging scenarios of 4G and beyond,
Carrier Aggregation has been proposed as a resource to allow enhancements in coverage and
capacity. Another key element to ensure the success of 4G and 5G networks is the deployment
of Small Cells to offload Macrocells. In this context, this MSc dissertation explores Small Cells
deployment via an analytical formulation, where metrics such as Carrier plus Noise Interference
Ratio, and physical and supported throughput are computed to evaluate the system´s capacity
under different configurations regarding interferers positioning in a scenario where Spectrum
Sharing is explored as a solution to deal with the scarcity of spectrum. One also uses the results
of this analyses to propose a cost/revenue optimization where deployment costs are estimated
and evaluated as well as the revenue considering the supported throughput obtained for the
three frequency bands studied, i.e., 2.6 GHz, 3.5 GHz and 5.62 GHz. Results show that, for a
project life time of 5 years, and prices for the traffic of order of 5€ per 1 GB, the system is
profitable for all three frequency bands, for distances up to 1335 m. Carrier Aggregation is also
investigated, in a scenario where the LTE-Sim packet level simulator is used to evaluate the use
of this approach while considering the use of two frequency bands i.e., 2.6 GHz and 800 MHz
to perform the aggregation with the scheduling of packets being performed via an integrated
common radio resource management used to compute Packet Loss Ratio, delay and goodput
under different scenarios of number of users and cell radius. Results of this analysis have been
compared to a scenario without Carrier Aggregation and it has been demonstrated that CA is
able to enhance capacity by reducing the levels of Packet Loss Ratio and delay, which in turn
increases the achievable goodput.
O planeamento e otimização de redes de redes celulares heterogéneas tem sido um tópico de investigação por várias décadas com diversas abordagens que incluem formulações analíticas e softwares de simulação, sendo aplicados na caracterização de diferentes cenários, com o objetivo de melhorar a capacidade de sistema. Além disso, o mundo testemunhou o nascimento das primeiras redes 5G New Radio, com uma tecnologia que foi desenvolvida com o objetivo de garantir taxas de transferência de dados muito superiores, com níveis de latência comparativamente inferiores. Neste cenário de desafios pós-4G, a agregação de Espectro tem sido proposta como uma solução para permitir melhorias na cobertura e capacidade do sistema. Outro ponto para garantir o sucesso das redes 5G é a utilização de Pequenas Células para descongestionar as Macro células. Neste contexto, esta dissertação de mestrado explora a utilização de Pequenas Células através de uma formulação analítica, onde se avaliam métricas como a relação portadora-interferência-mais-ruído, débito binário e débito binário suportado, sob diferentes configurações de posicionamento de interferentes em cenários onde a partilha de espectro é explorada como uma solução para enfrentar a escassez de espectro. Os resultados dessa análise são também considerados para propor uma otimização de custos/proveitos, onde os custos de implantação são estimados e avaliados, assim como os proveitos ao se considerar o débito binário suportado obtido para as três bandas de frequência em estudo, a saber, 2.6 GHz, 3.5 GHz e 5.62 GHz. Os resultados demonstram que, para um tempo de vida do projeto de 5 anos, e para preços de tráfego de cerca de 5 € por GB, o sistema é lucrativo para as três bandas de frequência, para distâncias até 1335 m. Também se investiga a agregação de espectro recorrendo ao simulador de pacotes LTE-Sim para avaliar o uso de duas bandas de frequência, a saber, 2.6 GHz e 800 MHz, considerando agregação com a calendarização de pacotes por meio de um gestor comum de recursos de rádio integrado, utilizado para computar a taxa de perda de pacotes, o atraso e o débito binário na camada de aplicação, em cenários com diferentes valores de número de utilizadores e raios das células. Os resultados dessa análise foram comparados com o desempenho de um cenário sem agregação. Foi demonstrado que a agregação é capaz de aumentar a capacidade de sistema, ao reduzir os níveis de perda de pacotes e do atraso, o que por sua vez possibilita a elevação dos níveis de débito binário atingidos.
O planeamento e otimização de redes de redes celulares heterogéneas tem sido um tópico de investigação por várias décadas com diversas abordagens que incluem formulações analíticas e softwares de simulação, sendo aplicados na caracterização de diferentes cenários, com o objetivo de melhorar a capacidade de sistema. Além disso, o mundo testemunhou o nascimento das primeiras redes 5G New Radio, com uma tecnologia que foi desenvolvida com o objetivo de garantir taxas de transferência de dados muito superiores, com níveis de latência comparativamente inferiores. Neste cenário de desafios pós-4G, a agregação de Espectro tem sido proposta como uma solução para permitir melhorias na cobertura e capacidade do sistema. Outro ponto para garantir o sucesso das redes 5G é a utilização de Pequenas Células para descongestionar as Macro células. Neste contexto, esta dissertação de mestrado explora a utilização de Pequenas Células através de uma formulação analítica, onde se avaliam métricas como a relação portadora-interferência-mais-ruído, débito binário e débito binário suportado, sob diferentes configurações de posicionamento de interferentes em cenários onde a partilha de espectro é explorada como uma solução para enfrentar a escassez de espectro. Os resultados dessa análise são também considerados para propor uma otimização de custos/proveitos, onde os custos de implantação são estimados e avaliados, assim como os proveitos ao se considerar o débito binário suportado obtido para as três bandas de frequência em estudo, a saber, 2.6 GHz, 3.5 GHz e 5.62 GHz. Os resultados demonstram que, para um tempo de vida do projeto de 5 anos, e para preços de tráfego de cerca de 5 € por GB, o sistema é lucrativo para as três bandas de frequência, para distâncias até 1335 m. Também se investiga a agregação de espectro recorrendo ao simulador de pacotes LTE-Sim para avaliar o uso de duas bandas de frequência, a saber, 2.6 GHz e 800 MHz, considerando agregação com a calendarização de pacotes por meio de um gestor comum de recursos de rádio integrado, utilizado para computar a taxa de perda de pacotes, o atraso e o débito binário na camada de aplicação, em cenários com diferentes valores de número de utilizadores e raios das células. Os resultados dessa análise foram comparados com o desempenho de um cenário sem agregação. Foi demonstrado que a agregação é capaz de aumentar a capacidade de sistema, ao reduzir os níveis de perda de pacotes e do atraso, o que por sua vez possibilita a elevação dos níveis de débito binário atingidos.
Description
Keywords
4g 5g Hetnet Lte Propagation Model Small Cell Spectrum Sharing